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Breast cancer (BC) is the most common cancer type and 
the second most frequent cause of cancer-related death in 
women1. Among all BC cases, 70% contain variable amounts 

of estrogen-receptor (ERα​)-positive cells. ERα​ is central to BC 
pathogenesis and serves as the target of endocrine therapies (ETs)2.  
ERα​-positive BC is subdivided into ‘intrinsic’ subtypes (luminal A 
and luminal B3) characterized by distinct prognoses, highlighting 
functional heterogeneity. Recent analyses demonstrate that inter-
patient heterogeneity is more pervasive (reflected by histological4, 
genetic architecture5 and transcriptional differences6), ultimately 
influencing the long-term response to endocrine treatment7. Indeed, 
30–40% of ERα​ BC patients relapse during or after completion of 
adjuvant ETs. At the time of relapse, ET resistance is commonplace, 
partly achieved via treatment-specific genetic evolutionary trajec-
tories8. Yet, recent studies have shown that driver coding mutations 
do not significantly change between primary and metastatic lumi-
nal BC, with the notable exception of ESR1 mutations9, suggest-
ing that alternative non-genetic mechanisms might contribute to 
BC progression and drug resistance. Parallel to genetic evolution,  

phenotypic/functional changes driven by epigenetic mechanisms 
can also contribute to BC progression and ET resistance in cell 
lines10. Epigenetic modifications of histone proteins have been suc-
cessfully used to map regulatory regions and to annotate non-coding 
DNA11,12. Acetylation of lysine 27 on histone 3 (H3K27ac) is strongly 
associated with promoters and enhancers of transcriptionally active 
genes13–15. Increasing evidence suggests that epigenetic information 
can actively transfer gene transcription states across cell division16–19. 
Epigenetic modifications also modulate ERα​ binding to enhancers 
by interacting with ERα​-associated pioneer factors20,21. Nevertheless, 
little is known about the epigenome of BC patients, its influence on 
intratumour phenotypic heterogeneity, and its role in BC progres-
sion. Here, we show the results of the first systematic investigation of 
the epigenetic landscape of ERα​-positive primary and metastatic BC 
from 47 individuals. Using H3K27ac chromatin immunoprecipita-
tion coupled with next generation sequencing (ChIP–seq) and ad 
hoc bioinformatics analyses, we have characterized inter- and intra-
patient epigenetic heterogeneity and identified transcription fac-
tor (TF) YY1 as a novel key player in ERα​-positive BC. Finally, we  
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demonstrate that epigenetic mapping can efficiently estimate phe-
notypic heterogeneity changes throughout BC progression.

Results
Mapping of regulatory regions in primary and metastatic 
ERα-positive BC. We profiled 55 ERα​-positive BC samples with 
H3K27ac ChIP–seq to build a comprehensive compendium of 
clinically relevant active regulatory regions (Fig. 1a; primary n =​ 39 
and metastatic n =​ 16) (Fig. 1a, Supplementary Tables 1 and 2 and 
Supplementary Data 1). H3K27ac-enriched regions were classified 
into 23,976 proximal promoters and 326,719 enhancers. Of the 
promoters, 80% were identified by profiling four patients, whereas 
nearly 40 were needed to reach the same coverage for enhancers, 
reflecting the 10:1 ratio between captured-enhancers and promoters 
(Supplementary Fig. 1c). These data are in agreement with enhanc-
ers being the main determinants of cell-type-specific transcriptional 
differences13,14,22,23. To gain insights into the penetrance of each reg-
ulatory region, we developed a sharing index (SI) (Supplementary 
Computational Methods) by annotating all enhancers and promot-
ers as a function of the number of patients sharing the H3K27ac 
signal at each specific location (Supplementary Fig. 1d). This analy-
sis showed that a vast proportion of enhancers are patient-specific 
(SI =​ 1), whereas active promoters typically show higher values of SI 
(Supplementary Fig. 1d). Collectively, these data demonstrate that 
enhancers account for the majority of potential epigenetic heteroge-
neity in ERα​-positive BC.

Assessment of phenotypic heterogeneity by enhancer ranking. 
Genetic heterogeneity is a hallmark of most solid tumors24 but its 
impact on phenotypic heterogeneity is characteristically hard to 
resolve. In agreement, despite extensive inter- and intratumoral 
genetic heterogeneity25, the majority of ERα​-positive patients ben-
efit from systemic ET7. Furthermore, de novo metastatic patients 
initially respond well to ET, suggesting that genetic heterogeneity 
on its own cannot explain treatment resistance and response. Of 
note, phenotypic hierarchies can override genetic hierarchies in 
brain cancers26,27, suggesting that inheritable epigenetic programs 
might contribute to phenotypic heterogeneity and treatment out-
come. Phenotypic heterogeneity in breast cancer has been known 
for decades. For example, immunohistochemistry (IHC) assessment 
of the proportion of ERα​-positive cells in single biopsies varies on 
a continuum from less than 1% to nearly 100% (ref. 28). However, 
IHC can test only a few targets in each sample, and deconvolution 
from bulk transcriptional data is technically unfeasible (Fig. 1b). 
For instance, cells with focal gene amplification have higher bulk 
gene expression, but individual cells contribute stochastic discrete 
amounts, as shown by single-molecule single-cell RNA fluorescence 
in situ hybridization (FISH)8. Conversely, recent evidence has shown 
that the signal captured by one-way reaction chromatin assays such 
as the assay for transposase-accessible chromatin using sequencing

(ATAC–seq) appears to be linearly proportional to the cells con-
tributing to it29. Histone modifications can also be thought of as 
digital information, with each single nucleosome being on (K27ac) 
or off at any given time (Fig. 1b). Notably, even within genetically 
clonal cell lines, the H3K27ac signal varies considerably between 
different regulatory regions. Regulatory regions labelled as super 
enhancers, for example, have 10 to 100 times more H3K27ac signal 
than typical enhancers14. What accounts for the variation in signal 
is not known, but one possibility is that heterogeneity within the 
cell population (either clonal or subclonal) contributes to the sig-
nal intensity. Although other factors might partially contribute to 
variation in the signal (local antibody affinity, histone dynamic, 
cell cycle, sonication efficiency, dinucleotide content, mappability 
and copy number aberrations; see Supplementary Computational 
Methods and Supplementary Figs. 2–4), we propose that the ChIP–
seq signal is robustly positively correlated with the number of  

contributing cells with a logistic relationship. Super-enhancers 
might represent regulatory regions active across most cells within 
a population at any given time (clonal, C peaks), while ‘typical’ 
enhancers with lower H3K27ac signal may represent subclones  
(S peaks, Fig. 1b). This interpretation is conceptually similar to 
using variant allele frequencies to infer genetic heterogeneity.

Phenotypical heterogeneity might be the consequence of hetero-
geneous cell populations (i.e., stromal, immune and cancer cells) or 
actual cancer-specific epigenetic subclones. As our ChIP–seq data 
are derived from samples with high tumor burden, we hypothesized 
that the H3K27ac signal could allow for a qualitative assessment of 
phenotypic heterogeneity (Fig. 1b). To test the relationship between 
clonality and ChIP signal we performed spike-in experiments in 
which known numbers of cells with well characterized enhancer 
activity (MCF7:on, MCF7-F:off) and similar genetic background10 
were admixed in incremental proportions before H3K27ac ChIP–
qPCR. The data show that H3K27ac enrichment is positively cor-
related to the number of cells in the absence of genomic differences 
(Fig. 1c). These findings were corroborated by an independent 
analysis using a different antibody (ERα​) (Supplementary Fig. 5). 
As the signal between different patients is not directly comparable, 
we quantile-normalized the data, assigning to each H3K27ac sig-
nal a rank index (RI: 1–100, strongest to weakest; Supplementary 
Computational Methods and Supplementary Fig. 6a). The signal 
from a low RI (C peaks) is then associated with clonal regulatory 
regions active in almost all cells. Conversely, a high RI (S peaks) mark 
more heterogeneous/subclonal enhancer activity. On investigating 
the relationship between RI and SI (Supplementary Computational 
Methods) we found an extremely robust correlation between the 
two parameters (Fig. 1d and Supplementary Fig. 6b), suggesting 
that clonal regulatory regions are more common between patients 
(low RI/high SI) whereas subclonal regulatory elements are more 
patient-specific (high RI/low SI). For follow-up analysis we split the 
enhancer elements into two main subgroups (SI <​ 21 and SI ≥​ 21) 
based on the hypothesis that SI ≥​ 21 might more strongly contribute 
to the population phenotype.

Enhancers are associated with BC risk and SNP and control 
gene transcription. Previous analyses from ERα​ BC cell lines have 
shown that a genetic predisposition to BC might occur through sin-
gle nucleotide polymorphisms (SNPs) that modulate TFs binding at 
enhancers (FOXA1 and ERα​30). We tested the relationship between 
regulatory regions captured in patients and DNA risk variants spe-
cifically associated with BC through a genome-wide association 
study (GWAS)30–32. Almost the totality of known BC risk variants 
from two independent data sets overlapped with our H3K27ac 
database. This overlap is highly significant specifically for enhanc-
ers, and not for other annotations (Fig. 1f,g). Notably, this associa-
tion is not replicated for colorectal cancer risk variants, suggesting 
that these enhancers might play a specific role in BC development  
(Fig. 1f). Currently, our patient-derived enhancer data set repre-
sents the most enriched annotation for GWAS variants in BC. Next, 
we assessed the relationship between estimated enhancer clonality 
and transcriptional output. As the average expression is a function 
of the number of cells engaged in active transcription and the num-
ber of RNA molecule within each cell33, assuming a stochastic sin-
gle-cell contribution, bulk mRNA levels should positively correlate 
with the number of transcribing cells. We could then test if clonal 
enhancers active in the majority of cells correlate with higher RNA 
levels. We thus linked enhancers to their potential target genes using 
CTCF insulated boundaries34, and analysed three independent BC 
expression data sets5,6,35 as a function of RI/SI indices. Our analyses 
support the hypothesis that genes associated with clonal enhancers 
have higher bulk RNA levels (Supplementary Fig. 7a). We observed 
more modest associations when analysing the transcriptome 
from normal breast tissue (Supplementary Fig. 7a, small insets),  
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Fig. 1 | Assessment of inter- and intratumour epigenetic heterogeneity. a, Mutational analysis for common cancer driver genes in the patient cohort 
selected for the study. b, Main hypothesis of the study. RNA is ultimately an analogue signal in which each individual cell, at any given time, can contribute 
a stochastic amount of RNA, while transcriptional data from bulk tissue represent an average over a million cells. For chromatin data, at any given time 
(t =​ Xi), each cell can only contribute a deterministic value to the bulk signal, generally from two alleles. Therefore, the relative strength of ChIP–seq 
data is dependent on the number of cells carrying an epigenetic signal at discrete loci. C and S represent strong and medium/weak signal, respectively. 
Scale bars, 50 μ​m. Clonal regulatory regions are commonly shared by BC patients, whereas weak enhancers are more patient-specific. c, EGR3 mRNA is 
expressed in MCF7 but not derivative MCF7-F cells. eRNA and Pol-II ChIA-PET show enhancer activity in MC7 but not MCF7-F. CTCF insulated perimeter 
is shown in yellow. Predicted looping from ChIA-PET is shown in red. The observed ChIP–qPCR signal for H3K27ac at EGR3 enhancers increases with 
increasing number of MCF7 cells mixed in the sample. Similar results were obtained from three independent experiments. d, Linear regression shows that 
clonal enhancers are commonly shared between BC patients. Of note, a small but discrete proportion of promoters/enhancers escape this general trend 
of having extremely low RI despite being patient-specific or higher RI while being shared (dotted areas). y axis =​ RI, x axis =​ SI. SI indicates the number of 
patients sharing the regulatory region. Each dot represents the median RI (all patients) for each single enhancer. Boxplots show the median RI value and 
interquartile ranges for regulatory regions with the same SI. e, Overlap between BC risk variants and annotated DNA elements. f, Variant set enrichment 
analysis, indicating that BC-specific but not CRC-specific GWAS risk variants occur more frequently than expected within the enhancer elements 
identified in our study. g, Overlap with annotated DNA elements and variant set enrichment analysis for the most recent independent set of BC risk 
variants. SNV, somatic nucleotide variant; RPKM, reads per kilobase millions of sequenced reads; LD, linkage disequilibrium; CRC, colorectal cancer; UTR, 
untranslated region; TSS, transcriptional start site.
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suggesting that our analysis has identified a subset of regulatory 
regions associated with malignant outgrowth. These data indi-
cate that transcripts identified as disregulated in BC might reflect 
changes in the size of phenotypic subpopulations between the het-
erogeneous normal tissue and a cancer population dominated by 
epithelial features. Collectively, our data show that enhancer activity 
strongly tracks transcriptional changes in BC patients.

Imputed TFs landscape of ERα BC patients. Enhancers store 
regulatory information in the form of TF binding motifs36. The 
vast majority of TFs require accessible chromatin to bind their 
cognate DNA sequences37. To extrapolate the TFs landscape from 
our data we integrated the DNaseI signal (DHS) from 129 cell lines 
with inferred nucleosome patterns obtained from the H3K27ac 
signal (Fig. 2a, Supplementary Computational Methods and 
Supplementary Fig. 7b). As expected, this analysis could identify 
well-known BC TFs according to their promoter–enhancer bias 
(Supplementary Fig. 7c). Applying TF motif analysis to regulatory 
regions defined by the same SI followed by unsupervised cluster-
ing identified two major clades (Supplementary Fig. 8). Remarkably, 
high and low SI clustered together, suggesting that putative clonal 
and subclonal enhancers contain distinct regulatory information 
(Supplementary Fig. 8). Functional TF binding is often associated 
with TF leaving a footprint within chromatin accessible regions36,38. 
Analysing footprints as a function of RI in ERα​-positive MCF7 BC 
cells revealed that enhancers with RI <​ 20 accumulate more foot-
prints than expected (Fig. 2b). These data show that clonal enhanc-
ers might recruit TFs with longer residence time38. Unexpectedly, we 
find estrogen-response element (ERE) motifs significantly enriched 
only in low SI subclonal enhancers (Fig. 2e and Supplementary  
Fig. 8). By integrating in vivo ERα​ binding39 with our data set 
we find that the proportion of binding sites increases with SI for 
enhancers (Fig. 2c) but not for promoters (Fig. 2c), consistent with 
ERα​ preferential binding at enhancer elements40. These data imply 
that shared enhancers have a strong propensity for ERα​ binding, 
despite being generally under-represented in EREs. Interestingly, 
although the majority of ERα​ binding events appear to be patient-
specific (ERα​ SI =​ 1), 0.003% of ERα​ are shared across most primary 
and metastatic patients (484 core-ERα​)39 (Fig. 2d). Together, these 
data support TF imaging data indicating that only a small fraction 
of ERα​-binding events with longer residency time are functional38. 
We therefore conclude that the largest portion of ERα​ binding iden-
tified in patients occurs at patient-specific, subclonal enhancers and 
might reflect transient ERα​–DNA interactions occurring while the 
receptor scans the genome38. The discrepancy between the small 
amount of highly shared ERα​ core binding and the observation of 
ERE-poor clonal enhancers led us to hypothesize that other TFs 
might collaborate with ERα​ to increase its transcriptional efficiency 
at clonal enhancers. Examining the bias of TF motifs towards high 
SI enhancers we identified YY1 as the top candidate (Fig. 2e). YY1 
is also the top ranked motif within the footprints of clonal MCF7 
enhancers (Fig. 2b). It has recently been implicated in the de novo 
formation of enhancer promoter looping during neural develop-
ment41,42 and the MYC-like ability to potentiate gene expression43, 
indicating a potential role in modulating the enhancer landscape in 
ERα​-positive BC.

YY1 enhancer activity marks a dominant phenotypic clone in 
BC. YY1 is an ubiquitously expressed TF (Supplementary Fig. 9a,b) 
that can act as an activator or repressor by binding DNA, RNA and 
chromatin modifiers44,45. Interestingly, the YY1 Drosophila homo-
logue PhoRC is involved in epigenetic memory by recruiting the 
Polycomb repressor complex to sequence specific regions46, but the 
role of YY1 in mammals is only partially understood. Collectively, 
our analyses predict that most BC cells should be YY1-positive,  
so the enhancer driving YY1 should be clonal. To test this, we  

identified three bona fide enhancers looping at the YY1 promoter 
using 3D chromatin data47 (Supplementary Fig. 10a). Enhancer A 
(SI =​ 41) directly interacts with enhancer B–C, suggesting a multi-
enhancers interaction with the YY1 promoter. Enhancer A con-
sistently ranks among the most clonal enhancers in our data set  
(Fig. 3a). By comparison, YY1 enhancer A activity is more variable 
in most normal tissues profiled by H3K27ac within the Epigenome 
Roadmap consortium11, implying that some tissues might harbour 
YY1 subclonal subpopulations (Fig. 3b). Consistent with these 
predictions, immunocytochemistry (IHC) meta-analysis (Fig. 3b) 
shows subclonal YY1-positive populations in tissue with high RI 
(Fig. 3b and Supplementary Fig. 10b). To directly test the regulatory 
potential of enhancer A, we used CRISPR–Cas9-mediated deletion 
to generate enhancer-KO (knock-out) ERα​ positive MCF7 cells 
(eKO cells, Fig. 3c). Deletion of 2/5 alleles directly reduces the YY1 
mRNA level by 30–35% (Fig. 3d). Collectively, these data show that 
enhancer ranking can capture qualitative changes in intratumoral 
heterogeneity, and that YY1 enhancer activity marks a dominant 
phenotypic clone in ERα​-positive BC.

Tumor tissues generally have a significantly higher expression 
level for YY1 compared to normal tissues (Supplementary Fig. 11a). 
This observation was replicated in an independent BC data set  
(Fig. 3e and Supplementary Fig. 11b). These data suggest that BC 
lesions might contain a larger fraction of YY1-positive cells than 
normal breast tissue (Fig. 3b). Meta-analysis of the METABRIC5 
data sets showed that ERα​-positive patients with higher bulk YY1 
mRNA at diagnosis have significantly worse outcomes, but this does 
not hold true for ERα​-negative patients (Fig. 3e). The prognostic 
value of YY1 in ERα​-positive patients is maintained when adjusting 
for other clinical features (Fig. 3e). To test if increased YY1 mRNA 
levels could be driven by an expansion of YY1-positive cells from 
a more heterogeneous population, we stained normal breast tissue 
sections for IHC. Our data show that lobules and ducts contain dis-
tinct YY1-positive subclonal populations, whereas nearby tumor 
tissue is overwhelmingly YY1-positive (Fig. 3f,g). Interestingly, YY1 
staining was absent or limited in specimens from patients with a 
different subtype of BC, specifically triple negative breast cancer 
(Supplementary Fig. 11c).

YY1 modulates functional ERα binding at enhancer regions.  
To gain mechanistic insights into the role of YY1 we performed 
ChIP–Seq in estrogen-deprived and estrogen-stimulated luminal 
BC MCF7 cells. In the absence of estrogen, YY1 occupies a small 
set of enhancers and promoters near housekeeping genes (Fig. 4a).  
Strikingly, estrogen stimulation induced a 23-fold expansion of 
the YY1 binding repertoire, mostly at enhancer regions associated 
with ERα​-BC signatures (Fig. 4a). Orthogonal analyses showed 
that induced YY1 binding involves almost all MCF7 active regu-
latory regions and is strongly associated with H3K27ac marks 
(Fig. 4b). Conversely, YY1 binding is absent from silenced genes 
(Supplementary Fig. 12a), demonstrating that YY1 does not associ-
ate with PRC2-mediated repression in BC cells. Our in vivo analyses 
suggest that YY1-motif-enriched enhancers are generally deprived 
of EREs (Fig. 2b). In agreement, our in vitro data show only a mar-
ginal overlap between YY1 and ERα​ or its pioneer factor FOXA1  
(Fig. 4b,c). Nevertheless, YY1, ERα​ and FOXA1 co-localization 
becomes significant at core-ERα​ loci in MCF7 cells (Fig. 4c). Similar 
observations were made by comparing YY1 overlap with patient-
derived ERα​ binding site analyses (Fig. 4d). In addition, we found 
that genes defining the luminal subtype in The Cancer Genome Atlas 
(TCGA) patients are significantly associated with YY1-ERα​ core 
binding but not patient-unique ERα​ (Fig. 4e). Overall, these data 
further suggest that YY1 might contribute to ERα​ binding transcrip-
tional output at a small subset of enhancers captured in most tumor 
cells and most patients. We further show that YY1 depletion is suffi-
cient to abrogate transcription from an ERα​-driven reporter (Fig. 4f).  
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YY1 depletion also abrogates cell proliferation in response to estro-
gen stimulation in MCF7 (Fig. 4g), suggesting that YY1 is a direct 
driver of the clonal proliferation observed in BC (Fig. 3d,e). These 
observations were replicated in independent luminal BC cell models 
(ZR75 and T47D, Supplementary Fig. 12b,c). YY1 depletion leads to 
significant downregulation of core-ERα​ target genes in luminal BC 
cell line models (Supplementary Fig. 12d). Finally, monitoring cell 
proliferation at the single cell level using eKO cell lines, we show that 
deletion of YY1 enhancer A is sufficient to reduce MCF7 growth 
in estrogen-supplemented conditions (Fig. 4h). Collectively these 
data identify YY1 as a novel essential TF significantly contributing 
to ERα​ regulatory network transcriptional activity.

YY1 contributes to endocrine resistance in luminal BC. YY1-
positive cells appear to dominate both primary and metastatic 
lesions in luminal patients, suggesting that this might remain 
important even after ET (Fig. 3a). YY1 depletion is indeed suf-
ficient to abrogate proliferation in long-term estrogen-deprived 
(LTED) cells, an MCF7-derivative mimicking AI-treated BC 
cells10(Fig. 4i). Interestingly, LTED cells have an expanded reper-
toire of ERα​ binding compared to MCF7, fuelled by endogenous 
ligands8,10. Nonetheless, YY1 and ERα​ overlap remains restricted to 
a minority of sites (Supplementary Fig. 13a). Intriguingly, the set of 
enhancers engaged by ERα​ and YY1 in LTED cells is radically dif-
ferent from MCF7, with the majority of ERα​-YY1 being specific to 
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each cell type (Supplementary Fig. 13a). ERα​-YY1 bound enhanc-
ers in LTED strongly associate with the transcription of genes 
involved with acquired ET, suggesting that during epigenetic repro-
gramming, YY1 might stabilize ERα​ to LTED-specific enhancers 
(Supplementary Fig. 13b). Previous studies have shown that the 
transcription of a small set of estrogen-activated genes is not antag-
onized by current ETs48. Examining the regulatory landscape near 
these genes we found an ever increasing association with ERα​-YY1 
bound enhancers, especially with core ERα​-YY1 (Supplementary 
Fig. 13c). Collectively, these data strongly support the role of YY1 in 
ERα​ BC growth and progression.

YY1-ERα promotes SCL9A3R1 expression despite endocrine 
treatment. By ranking the set of endocrine unresponsive genes 
bound by YY1-ERα​ for gene-specific prognostic power calculated 
in patients treated with ETs35, we identified SLC9A3R1 as a poten-
tial driver of ET resistance (Fig. 5a). SLC9A3R1 (NHERF1/EBP50) 
encodes a Na/H exchanger regulatory cofactor with a poten-
tial role in metastatic invasion49. High expression of SLC9A3R1 
independently correlates with poor survival in other ERα​-BC 
data sets (Supplementary Fig. 14a). Despite being an ERα​ tar-
get, SLC9A3R1 expression is not suppressed by tamoxifen in 
MCF7 cells48. Additionally, SLC9A3R1 remains transcriptionally 
active in most ET-resistant BC cell lines that retain ERα​ expres-
sion (Supplementary Fig. 14b–e), demonstrating that ERα​ activ-
ity remains critical for SLC9A3R1 expression. In vivo SLC9A3R1 
expression is also unaffected by neo-adjuvant AI treatment  
(Fig. 5b). Notably, bulk RNA–seq data from a panel of cancer cell 
lines demonstrate that ERα​-positive BC cells have the highest lev-
els of SLC9A3R1 mRNA (Supplementary Fig. 15a). More impor-
tantly, TCGA RNA–seq analysis shows that SLC9A3R1 expression 
is higher specifically in ERα​-positive BC patients compared to nor-
mal tissue or other subtypes (Supplementary Fig. 15b). Chromatin 
analyses of MCF7 and LTED cells identify three potential enhanc-
ers within the insulated SLC9A3R1 locus (E1–E3). Interestingly, 
E1–E2 enhancers loop to the SLC9A3R1 promoter and are char-
acterized by high SI, YY1/core-ERα​ binding sites (Supplementary  
Fig. 15c). In vivo transcriptional analysis demonstrates that 
SLC9A3R1 is the only gene near the E1–E2 enhancers that shows a 
significant increase in bulk RNA level when comparing normal breast 
tissue with ERα​–positive BC (Supplementary Fig. 15d). Remarkably, 
enhancer activity appears to be resistant to ETs (Supplementary 
Fig. 15c). Furthermore, SLC9A3R1 expression is dependent on 
YY1 (Supplementary Fig. 16a), demonstrating that both ERα​ and 
YY1 are essential for full enhancer activity. Collectively, these data 
demonstrate that SLC9A3R1 expression is driven by a BC-specific 
YY1-ERα​ bound enhancer. Silencing SLC9A3R1 is sufficient to 
reduce estrogen-induced growth in ERα​-positive cells (Fig. 5c). 
Intriguingly, SLC9A3R1 is not essential for a second ERα​-positive 
model (T47D) but appears to be a critical gene for both AI-resistant 
cells models (Fig. 5c and Supplementary Fig. 16b). Overall, these 
data identify SLC9A3R1 as a novel player involved in ET resistance, 
the function of which remains to be elucidated.

Mapping phenotypic heterogeneity using YY1 and SLC9AR1 
enhancer activity. SLC9A3R1 enhancer activity (E1–E2, SI =​ 34, 
RI ≥​ 20) indicates that SLC9A3R1 marks subclonal populations 
in most primary patients (Fig. 5d). Meta-analysis of SLC9A3R1 
enhancer activity (RI) within the ENCODE H3K27ac data sets indi-
cates that MCF7 cells are the only cancer cells containing a clonal 
SLC9A3R1 population (Supplementary Fig. 16c). Of note, the size 
of the subclonal population correlates with total RNA content 
for cells contained in both assays, suggesting that the decreasing 
bulk RNA signal is driven by a progressively smaller subpopula-
tion (Supplementary Fig. 16c). Similar analyses of YY1 enhanc-
ers indicate that cancer cell lines are prevalently clonal for YY1  

expression (Supplementary Fig. 16d) whereas both YY1 and 
SLC9A3R1 RIs in mammary epithelial cells predict smaller sub-
clonal populations. These observations fit extremely well with 
experimental data from IHC profiles from normal and malignant 
breast (Fig. 3d and Supplementary Fig. 11c). Meta-analyses from the 
Epigenome Roadmap predict mainly SLC9A3R1-positive subclonal 
populations, with the exception of gastrointestinal tissues, and 
these data fit well with RNA–seq measurements from independent 
cohorts (Fig. 5e and Supplementary Fig. 17a). Analogous to YY1 
analysis, SLC9A3R1 IHC data identifies decreasing SLC9A3R1-
positive cells in specimens characterized by increasing RI scores 
(Fig. 5e and Supplementary Fig. 17b). To validate that the RI index 
can estimate phenotypic clones, we retrospectively collected avail-
able biopsies for the BC patients profiled with H3K27ac ChIP–seq 
(n =​ 19). IHC analysis of YY1 (Fig. 5f) showed that, with the excep-
tion of one metastatic sample (M3), YY1 staining robustly correlates 
with RI, confirming large clonal YY1-positive populations in all 
examined tissues (Fig. 5f). In parallel, SLC9A3R1 enhancer activity 
correctly estimated the size of the subclonal subpopulations in indi-
vidual patients (Fig. 5g). Additional meta-analyses on Protein Atlas 
data support these findings by identifying YY1 clonal populations 
and SLC9A3R1 subclonal populations in most ERα​ BC samples 
(Supplementary Fig. 18). Overall, these data show that enhancer 
activity can be used to qualitatively deconvolute heterogeneous 
populations into phenotypical subclones.

Phenotypic evolution during BC progression is shaped by endo-
crine treatment. Tumor evolution studies have primarily focused 
on treatment-naive patients, taking advantage of multiregional sam-
pling to monitor changes in clonality50,51. Clonal tracking is depen-
dent in part on passenger mutations, and the effect of therapy has 
rarely been taken into account8,52. More importantly, clonality has 
been traced using genetic variants, with the intrinsic limitation of 
correlating genetic changes to phenotypic ones. For example, genetic 
subclones might be phenotypically equivalent, while a recent study 
using barcoded glioblastoma cells shows that phenotypic clones 
might evolve independently from genetic clones26. The few studies 
that looked at driver coding mutation changes in BC show relatively 
similar mutational landscapes9 (Fig. 1a), suggesting a potential role 
for epigenetically driven phenotypic evolution. We thus leveraged 
our ability to infer phenotypic clones through enhancer activity 
to interrogate our patient’s data set, focusing on events occurring 
between treatment-naive primaries and treatment-resistant meta-
static BC (Fig. 6a). We hypothesized that phenotypic clonal evolu-
tion might be driven by a coordinated activation/selection of groups 
of enhancers during BC progression, and this could be influenced 
by treatment. Our previous results suggest that YY1-positive cells 
remain clonal during progression (Fig. 3a). Conversely, we show that 
SLC9A3R1 expression is not antagonized by endocrine treatment, 
suggesting that SLC9A3R1-positive clones could expand during 
progression. We then calculated changes in RI (Δ​RI) for all enhanc-
ers captured in at least three patients (SI >​ 3, n =​ 88,935) between 
primary and metastatic samples (Fig. 6b). SLC9A3R1 ranks among 
the enhancers with the strongest increase in predicted clonality 
going from primary to metastatic samples (Fig. 6b,c). Conversely, 
YY1 enhancer activity remains relatively unchanged (Fig. 6b,c). To 
substantiate these data, we mapped the size of YY1 and SLC9A3R1-
positive phenotypic clones in an independent cohort of 20 primary 
tumor and metastasis-matched longitudinal biopsies. We found that 
YY1-positive cells remain clonal in both settings, while SLC9A3R1-
positive subclones significantly expand during metastatic progres-
sion (Fig. 6d). Interestingly, the only metastatic case in which we 
have observed a contraction of the SLC9A3R1-positive clone also 
showed a concomitant loss of ERα​ and PR positivity, demonstrat-
ing that SLC9A3R1 remains an ERα​-dependent target despite being 
ET-insensitive in vivo (Fig. 6d). Overall, these data demonstrate that 
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changes in enhancer ranking can estimate functional evolution dur-
ing BC progression.

To gain insight into functional evolution, we systematically 
annotated all regulatory regions based on bias in detection between 
primary and metastatic patients (Fig. 6e). As expected, the bulk of 
enhancers and promoters do not show bias towards primary and 
metastatic BC patients (common enhancers, CEs). However, we 
could identify two distinct sets of regulatory region where activ-
ity is stronger in primary (primary enhancers, PEs) or metastatic 
(metastatic enhancers, MEs) patients (Fig. 6f). We next explored the 
potential causes and functional consequences driving these coor-
dinated epigenetic changes by identifying the associated transcrip-
tional targets of MEs and PEs34. Strikingly, we find that PE-driven 
gene transcription is associated with a significantly better outcome, 
while ME-associated gene transcription in primary samples is asso-
ciated with poor prognosis (Fig. 6g). These data imply that primary 
samples containing larger subpopulations of phenotypic clones with 
metastatic features relapse earlier. PEs are associated with abnormal 
proliferation and vascularization, two key events in early tumori-
genesis. Remarkably, MEs are associated with genes promoting 
BC progression (FOXA139) or ET resistance (Fig. 6h). Altogether, 
these data suggest that ETs play a central role in shaping phenotypic 
clonal evolution. Additional in-depth studies are needed to dissect 
the temporal events triggered during phenotypic clonal evolution. 
Phenotypic subclones could evolve by early coordinated activation 
and decommissioning of epigenetically defined regulatory regions 
(acquired), selection of the fittest pre-existent epigenomic land-
scape (de novo), or a combination of both.

Discussion
Genomic profiling of BC patients has revealed extensive clonal het-
erogeneity and evolution24,53, but it remains difficult to link geno-
type to actual phenotypes. Most RNA-based analyses, which may 
better reflect the phenotypic state of cancer cells, cannot inform on 
the existence of distinct subpopulations. Finally, molecular pathol-
ogy can inform on the relative amount of protein abundance at the 
single-cell level, but is laborious and not suitable for testing multiple 
targets simultaneously. In this work, we have used epigenomic anal-
yses to extrapolate phenotypic heterogeneity in solid tumor samples. 
Our analysis reveals that histone-based ChIP–seq signals, similarly 
to ATAC–seq29, generally correlate with the number of cells in a 
population carrying the specific epigenetic information. Our pre-
dictions using YY1 and the SLC9A3R1 enhancer fit extremely well 
with experimental data derived from normal tissues or BC patients. 
The finding that clonal regulatory regions dominating the land-
scape of individual tumor samples are shared across many patients 
parallels recent genomic evidence showing that truncal (high allele 
frequency) mutations are also the most common mutations within 
cancer cohorts.

Our work reveals several critical principles underlying pheno-
typic–functional heterogeneity and its role in BC progression. First, 
by comparing samples from drug-resistant metastatic patients with 
drug-naive primary samples, we uncovered a set of enhancers mark-
ing phenotypic clones that significantly expand during BC progres-
sion. A set of enhancers expanding in metastatic samples point at 
progressive activation of FOXA1 and its network. It was recently 
reported that FOXA1 levels are increased in metastatic samples39. 
Our data predict that, similar to SLC9A3R1, FOXA1 positivity 
increases as a consequence of the expansion of a phenotypic clone 
marked by an active FOXA1 enhancer. It is tempting to speculate 
that this paradigm might be valid for other genes. If correct, it might 
signify that during cancer evolution, the proportion of cells acti-
vating transcription is more important than the absolute changes 
in transcription at single-cell levels. Interestingly, a set of enhanc-
ers deactivated during progression involve interleukin-2 (IL-2)  
signalling (Fig. 6h). Reduction in IL-2 signalling was identified  

as a potential marker of relapse54. Whether the IL-2 signal source 
is the BC cells themselves or is due to a small contamination of 
immune cells needs to be defined. Equally, it will be important to 
measure real-time activation/selection of enhancers in appropriate 
systems to ultimately establish if phenotypic cancer evolution can be 
driven by Lamarckian events.

Additionally, our analysis has identified two novel drivers of 
luminal BC. First, we identified YY1 as a key TF associated with 
clonal enhancers and promoters in BC patients. Our data strongly 
support the idea that YY1 acts as a global co-activator associated 
with the entire active epigenetic landscape in BC cells. Several lines 
of evidence indicate that YY1 might interact directly with modi-
fied nucleosomes, possibly through its partner INO8055. YY1 wide-
spread association with a clonal enhancer suggests it might play a 
role in epigenetic memory. Intriguingly, a positive screen for fac-
tors that improve induced pluripotent cells formation (iPS) identi-
fied YY1 as the top hit, further supporting its potential role as an 
enhancer gatekeeper56. More specifically to ERα​ BC, we hypoth-
esize that YY1 plays a critical role in stabilizing ERα​ binding at the 
transcriptionally productive core-ERα​ enhancers. Single-molecule 
imaging shows that estrogen-activated ERα​ increases its residency 
time on the chromatin38, and recent evidence has shown that eRNA 
can trap YY1 on the chromatin45. Altogether, these data raise the 
intriguing hypothesis that YY1 might contribute to increased ERα​ 
residency at clonal enhancers (Supplementary Fig. 19). This could 
explain why some ERα​ occupancy is captured in most patients, as a 
longer residency time would increase the chances of being captured 
by ChIP–Seq39. Longer residency might also explain the increased 
transcriptional activity (Fig. 4d) and increased TF footprints  
(Fig. 2c) of these enhancers. Another possibility is that YY1 defines 
the set of ERα​-bound enhancers with transcriptionally productive 
looping at target genes41,42,57. Further studies will investigate these 
hypotheses. Future studies are also required to investigate the exact 
mechanisms through which SLC9A3R1 contributes to BC and effi-
cient strategies to antagonize its transcription. We recently dem-
onstrated that individual ETs can drive parallel genetic evolution 
in vivo8 and epigenetic reprogramming in vitro10. Our data now 
strongly support the notion that therapeutic interventions also play 
an essential role driving specific epigenetic evolution during BC 
progression in the clinic.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41591-018-0091-x.

Received: 25 September 2017; Accepted: 14 May 2018;  
Published online: 23 July 2018

References
	1.	 Ferlay, J. et al. Cancer incidence and mortality worldwide: sources,  

methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, 
E359–E386 (2015).

	2.	 Ali, S., Buluwela, L. & Coombes, C. Antiestrogens and their therapeutic 
applications in breast cancer and other diseases. Ann. Rev. Med. 62,  
217–232 (2010).

	3.	 Perou, C. et al. Molecular portraits of human breast tumours. Nature 406, 
747–752 (2000).

	4.	 Genestie, C. et al. Comparison of the prognostic value of Scarff–Bloom–
Richardson and Nottingham histological grades in a series of 825 cases of 
breast cancer: major importance of the mitotic count as a component of both 
grading systems. Anticancer Res. 18, 571–576 (1998).

	5.	 Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast 
tumours reveals novel subgroups. Nature 486, 346–352 (2012).

	6.	 Koboldt, D. et al. Comprehensive molecular portraits of human breast 
tumours. Nature 490, 61–70 (2012).

	7.	 EBCTCG. Aromatase inhibitors versus tamoxifen in early breast  
cancer: patient-level meta-analysis of the randomised trials. Lancet 386, 
1341–1352 (2015).

Nature Medicine | VOL 24 | SEPTEMBER 2018 | 1469–1480 | www.nature.com/naturemedicine 1479

https://doi.org/10.1038/s41591-018-0091-x
https://doi.org/10.1038/s41591-018-0091-x
http://www.nature.com/naturemedicine


Articles NATuRE MEdiCinE

	8.	 Magnani et al. Acquired CYP19A1 amplification is an early specific 
mechanism of aromatase inhibitor resistance in ERα​ metastatic breast cancer. 
Nat. Genet. 49, 444–450 (2017).

	9.	 Yates, L. et al. Genomic evolution of breast cancer metastasis and relapse. 
Cancer Cell 32, 169–184 (2017).

	10.	Nguyen, V. et al. Differential epigenetic reprogramming in response to 
specific endocrine therapies promotes cholesterol biosynthesis and cellular 
invasion. Nat. Commun. 6, 10044 (2015).

	11.	Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference 
human epigenomes. Nature 518, 317–330 (2015).

	12.	ENCODE Project Consortium. et al. An integrated encyclopedia of DNA 
elements in the human genome. Nature 489, 57–74 (2012).

	13.	Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine 
human cell types. Nature 473, 43–49 (2011).

	14.	Whyte, W. et al. Master transcription factors and mediator establish 
super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

	15.	Heintzman, N. et al. Distinct and predictive chromatin signatures of 
transcriptional promoters and enhancers in the human genome. Nat. Genet. 
39, 311–318 (2007).

	16.	Falahi, F. et al. Towards sustained silencing of HER2/neu in cancer by 
epigenetic editing. Mol. Cancer Res. 11, 1029–1039 (2013).

	17.	Laprell, F., Finkl, K. & Müller, J. Propagation of polycomb-repressed chromatin 
requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017).

	18.	Wang, X. & Moazed, D. DNA sequence-dependent epigenetic inheritance of 
gene silencing and histone H3K9 methylation. Science 356, 88–91 (2017).

	19.	Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3  
in maintaining the OFF state of a Drosophila HOX gene. Science 356, 
eaai8236 (2017).

	20.	Magnani, L., Eeckhoute, J. & Lupien, M. Pioneer factors: directing 
transcriptional regulators within the chromatin environment. Trends Genet. 
27, 465–474 (2011).

	21.	Jozwik, K. M. & Carroll, J. S. Pioneer factors in hormone-dependent cancers. 
Nat. Rev. Cancer 12, 381–385 (2012).

	22.	Hnisz, D. et al. Convergence of developmental and oncogenic signaling 
pathways at transcriptional super-enhancers. Mol. Cell 58, 362–370 (2015).

	23.	Heintzman, N. D. et al. Histone modifications at human enhancers reflect 
global cell-type-specific gene expression. Nature 459, 108–112 (2009).

	24.	Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed 
by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

	25.	Williams, M. J., Werner, B., Barnes, C., Graham, T. & Sottoriva, A. 
Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 
238–244 (2016).

	26.	Lan, X. et al. Fate mapping of human glioblastoma reveals an invariant stem 
cell hierarchy. Nature 549, 227–232 (2017).

	27.	Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in 
human oligodendroglioma. Nature 539, 309–313 (2016).

	28.	Harvey, J. M., Clark, G. M., Osborne, C. K. & Allred, D. C. Estrogen receptor 
status by immunohistochemistry is superior to the ligand-binding assay  
for predicting response to adjuvant endocrine therapy in breast cancer.  
J. Clin. Oncol. 17, 1474–1481 (1999).

	29.	Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of 
regulatory variation. Nature 523, 486–490 (2015).

	30.	Cowper-Sal Iari, R. et al. Breast cancer risk-associated SNPs modulate the 
affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44, 
1191–1198 (2012).

	31.	Cohen, A. J. et al. Hotspots of aberrant enhancer activity punctuate the 
colorectal cancer epigenome. Nat. Commun. 8, 14400 (2017).

	32.	Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk 
loci. Nature 551, 92–94 (2017).

	33.	Levsky, J. M. & Singer, R. H. Gene expression and the myth of the average 
cell. Trends Cell Biol. 13, 4–6 (2003).

	34.	Wang, S. et al. Target analysis by integration of transcriptome and ChIP–seq 
data with BETA. Nat. Protoc. 8, 2502–2515 (2013).

	35.	Gyorffy, B. et al. An online survival analysis tool to rapidly assess the effect of 
22,277 genes on breast cancer prognosis using microarray data of 1,809 
patients. Breast Cancer Res. 123, 725–731 (2010).

	36.	Neph, S. et al. An expansive human regulatory lexicon encoded in 
transcription factor footprints. Nature 489, 83–90 (2012).

	37.	Thurman, R. E. et al. The accessible chromatin landscape of the human 
genome. Nature 489, 75–82 (2012).

	38.	Paakinaho, V. et al. Single-molecule analysis of steroid receptor and cofactor 
action in living cells. Nat. Commun. 8, 15896 (2017).

	39.	Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated 
with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

	40.	Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding 
reveals long-range regulation requiring the Forkhead protein FoxA1. Cell 122, 
33–43 (2005).

	41.	Beagan, J. A. et al. YY1 and CTCF orchestrate a 3D chromatin looping switch 
during early neural lineage commitment. Genome Res. 27, 1139–1152 (2017).

	42.	Weintraub, A. et al. YY1 is a structural regulator of enhancer–promoter 
loops. Cell 171, 1573–1588 (2017).

	43.	Vella, P., Barozzi, I., Cuomo, A., Bonaldi, T. & Pasini, D. Yin Yang 1 extends 
the Myc-related transcription factors network in embryonic stem cells. 
Nucleic Acids Res. 40, 3403–3418 (2012).

	44.	Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. 
Cell 146, 119–133 (2011).

	45.	Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory 
elements. Science 350, 978–981 (2015).

	46.	Klymenko, T. et al. A polycomb group protein complex with sequence-
specific DNA-binding and selective methyl-lysine-binding activities.  
Genes Dev. 20, 1110–1122 (2006).

	47.	Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals 
chromatin topology for transcription. Cell 163, 1611–1627 (2015).

	48.	Hurtado, A., Holmes, K., Ross-Innes, C., Schmidt, D. & Carroll, J. FOXA1  
is a key determinant of estrogen receptor function and endocrine response. 
Nat. Genet. 43, 27–33 (2011).

	49.	Cardone, R. A., Casavola, V. & Reshkin, S. J. The role of disturbed pH 
dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 5, 
786–795 (2005).

	50.	Gerlinger, M. et al. Genomic architecture and evolution of clear cell  
renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 
225–233 (2014).

	51.	McGranahan, N. & Swanton, C. Biological and therapeutic impact of 
intratumor heterogeneity in cancer evolution. Cancer Cell 27, 15–26 (2015).

	52.	Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)
Kα​ inhibitor. Nature 518, 240–244 (2015).

	53.	Shah, S. et al. Mutational evolution in a lobular breast tumour profiled at 
single nucleotide resolution. Nature 461, 809–813 (2009).

	54.	Arduino, S. et al. Reduced IL-2 level concentration in patients with  
breast cancer as a possible risk factor for relapse. Eur. J. Gynaecol. 17, 
535–537 (1996).

	55.	Cai, Y. et al. YY1 functions with INO80 to activate transcription. Nat. Struct. 
Mol. Biol. 14, 872–874 (2007).

	56.	Onder, T. et al. Chromatin-modifying enzymes as modulators of 
reprogramming. Nature 486, 598–602 (2012).

	57.	Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer–promoter interactions are 
encoded by complex genomic signatures on looping chromatin. Nat. Genet. 
48, 488–496 (2016).

Acknowledgements
The authors acknowledge and thanks all patients and their families for support and 
for donating research samples. The authors thank the Breast Cancer Now Tissue Bank 
(project TR0121), Imperial Tissue Bank and the LEGACY study for contributing tissues. 
The authors acknowledge infrastructure support from the Cancer Research UK Imperial 
Centre, the Imperial Experimental Cancer Medicine Centre and the National Institute for 
Health Research Imperial Biomedical Research Centre. L.M. was supported by a CRUK 
fellowship (C46704/A23110) and an Imperial Junior Fellowship (G53019). D.P. was 
supported by a Wellcome Trust PhD studentship (103034/Z/13/Z). G.C. was supported 
by a Marie Skłodowska Curie Training Grant (642691, EpiPredict). G.P. was supported 
by AIRC IG 2016-18696. The authors thank J.A. Buendia, L. Watson and J. Carrol for 
constructive comments on the manuscript.

Author contributions
L.M. conceived the study. D.K.P., E.E., N.S. and Y.P. performed the experiments. L.M., 
G.C., B.G., A.S., L.S.P., I.B. and P.S. developed and performed bioinformatic analyses. 
K.G. organized tissue collection. D.J.H., G.S., P.B., C.P. and R.C.C. recruited patients and 
supplied tissues. S.S. performed pathology assessment of ChIP–seq processed samples. 
G.P. provided matched material. A.V. and G.P. performed IHC staining and scoring.  
All authors read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41591-018-0091-x.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to L.M.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Nature Medicine | VOL 24 | SEPTEMBER 2018 | 1469–1480 | www.nature.com/naturemedicine1480

https://doi.org/10.1038/s41591-018-0091-x
https://doi.org/10.1038/s41591-018-0091-x
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


ArticlesNATuRE MEdiCinE

Methods
Tumor tissue processing. BC samples for ChIP–seq were collected by the Imperial 
Tissue Bank (project ethic approval R15021) and from Breast Cancer Now Tissue 
Bank (BCNTB- TR000053-MTA and TR000040). BC fresh frozen tissue samples 
each underwent aseptic macroscopic adipose tissue dissection. The dissected 
tumor tissue was sectioned into 2 mm ×​ 2 mm fragments in a Petri dish placed 
over dry ice. Tumor fragments were then fixed using 1% formaldehyde solution for 
10 min. Cold glycine (1 M) was added to the formaldehyde-fixed tissue for 10 min. 
The fragments were then pulverized using pestle and mortar and homogenized 
using liquid nitrogen. We used samples with high tumor burden to minimize the 
introduction of noise from non-tumor tissues (>​70%, Supplementary Fig. 1a).  
Wherever possible, we profiled patients for known cancer drivers using targeted 
enrichment sequencing (Fig. 1a and Supplementary Data 1). A total of 85% 
of samples yielded satisfactory results (47/55, Supplementary Fig. 1b and 
Supplementary Table 2).

Cancer hotspot mutations. See Supplementary Computational Methods.

ChIP. The ChIP protocol was conducted as described in ref. 58 with few 
modifications. In summary, following fixation, the tumor tissue underwent 
chromatin extraction and sonication using a Bioruptor Pico sonication device 
(Diagenode, B01060001) using 20 cycles (30 s on and 30 s off) at maximum intensity. 
Purified chromatin was then separated for the following: (1) immunoprecipitation 
using 4 μ​g of H3k27ac antibodies (Abcam; ab4729) per ChIP experiment or using 
4 μ​g of YY1 antibodies (Santa Cruz; sc-281X) (ChIP–seq experiments for YY1 were 
performed in biological duplicates, cells were stimulated with estrogen for 45 min, 
after which maximum ERα​-binding to chromatin occurs; biological replicates 
showed very high correlation (R2 =​ 0.98), so only consensus loci were kept for 
further analyses); (2) non-immunoprecipitated chromatin, used as input control; 
(3) assessment of sonication efficiencies using a 1% agarose gel. Before construction 
of ChIP–seq libraries (NEB Ultra II kit, Supplementary Methods), enrichment 
of the immunoprecipitated sample was ascertained using positive and negative 
controls for ChIP–qPCR. Library preparation was performed using 10–50 ng of 
immunoprecipitated and Input samples. Before sequencing, libraries were again 
retested to confirm enrichment using positive and negative controls.

ChIP–qPCR. Briefly, reactions were carried out in 10 μ​l volume containing 5 μ​l  
of SYBR-green mix (ABI; 4472918), 0.5 μ​l of primer (5 μ​M final concentration), 
2.5 μ​l of genomic DNA and 2 μ​l of DNASE/RNASE-free water. A three-step cycle 
programme and a melting analysis were applied. The cycling steps were as follows: 
10 s at 95 °C, 30 s at 60 °C and 30 s at 72 °C, repeated 40 times.

Ranking and sharing index. See Supplementary Computational Methods.

Variant set enrichment. See Supplementary Computational Methods.

DHS imputations and TF motif analyses. See Supplementary Computational 
Methods.

Imputed DHS with in vivo ERα binding overlap. Dataset of ERα​ binding derived 
from BC patients were obtained from ref. 39. The ERα​ SI was calculated using the 
same algorithm used for the H3K27ac dataset (see Supplementary Computational 
Methods). Overlap with imputed DHS was calculated using BedTools by 
calculating the overlap (at least one base pair) with the Cistrome Pipeline Analysis 
Suite (http://cistrome.org/Cistrome/Cistrome_Project.html). Percentages of 
overlap were calculated using binned DHS as a variable first dataset and all the 
concatenated in vivo ERα​ as the second dataset.

Footprint analysis. See Supplementary Computational Methods.

Encode and epigenomic roadmap ranking. See Supplementary Computational 
Methods.

Immunocytochemistry. Haematoxylin and eosin staining of clinical samples was 
performed to calculate the tumor burden before ChIP–seq. Briefly, 4-μ​m-thick 
sections were obtained from formalin-fixed and paraffin-embedded specimens. 
After dewaxing in xylene and graded ethanol, sections were incubated in 3% 
H2O2 solution for 25 min to block endogenous peroxidase activities and then 
subjected to microwaving in EDTA buffer for antigen retrieval. For YY1 (Protein 
Atlas HPA001119, Atlas Antibodies cat. no. HPA001119, RRID:AB_1858930) 
flowing conditions were used: tissue sections were incubated with primary 
monoclonal antibody overnight at 4 °C, and chromogen development was 
performed using the Envision system (DAKO Corporation). A minimum of 500 
tumor cells were scored, with the percentage of tumor cell nuclei in each category 
recorded. For SLC9A3R1 (HPA9672 and HPA27247, Atlas Antibodies cat. no. 
HPA009672, RRID:AB_1857215 and Atlas Antibodies cat. no. HPA027247, 
RRID:AB_10601162, respectively) the following conditions were used. HPA9672 
was diluted 1:400 and HPA27247 was diluted 1:1,500. Staining was automatized 
with a Ventana Benchmark-Ultra using epitope retrieval ER2 for 20 min. ER and 

PgR immunoreactivity were assessed with the FDA-approved ER/PR PharmDX kit 
(Dako). The prevalence of ER/PgR-positive invasive cancer cells, independent of 
staining intensity, was quantitatively annotated in the original diagnostic reports. 
In accordance with ASCO/CAP guidelines, tumors with ≥​1% of immunoreactivity 
were considered positive.

Cell culture. MCF7 was cultured using Dulbecco’s modified Eagle’s medium 
(DMEM) containing 10% fetal calf serum (FCS) and 100 U penicillin/0.1 mg ml−1 
streptomycin, 2 mM l-glutamine plus 10−8 17-β​-estradiol (SIGMA E8875). MCF7 
long-term estrogen-deprived (MCF7-LTED) cells were grown in phenol-free 
DMEM with 10% charcoal-stripped FCS (DCFCS) and 100 U penicillin/0.1 mg ml−1 
streptomycin and 2 mM l-glutamine. T47D and T47D-LTED cells were passaged 
using DMEM containing 10% FCS and 100 U penicillin/0.1 mg ml−1 streptomycin, 
2 mM l-glutamine and phenol-free DMEM with 10% DCFCS and 100 U 
penicillin/0.1 mg ml−1 streptomycin and 2 mM l-glutamine, respectively. ZR75-1 
cells were grown in DMEM containing 10% FCS and 100 U penicillin/0.1 mg ml−1 
streptomycin, 2 mM l-glutamine.

siRNA. siRNA against SLC9A3R1 (gene ID 9368: Ambion s17919, s17920), YY1 
(gene ID 7528: Ambion s14958, s14959, s14960) and Silencer negative control 
(Ambion AM4611). 1.5 ×​ 105 cells were seeded per well using a six-well plate. 
MCF7 cells were seeded in phenol-free DMEM with 10% DCFCS and 100 U 
penicillin/0.1 mg ml−1 streptomycin and 2 mM l-glutamine. After 24 h, the cells 
were transfected with siRNA using Lipofectamine 3000 (Invitrogen L3000015). 
T47D and ZR75-1 cells were seeded in DMEM containing 10% FCS and 100 U 
penicillin/0.1 mg ml−1 streptomycin, 2 mM l-glutamine. After 24 h, the cells were 
transfected with siRNA using Lipofectamine 3000 (Invitrogen L3000015). Cells 
were collected for analysis following at least 48 h of transfection.

CRISPR/–Cas9 enhancer knockout. See Supplementary Methods.

Live cell imaging. MCF7 and YY1-EKO clones cells were plated at a density 
of 3 ×​ 103 in a 96-well plate in FluoroBrite DMEM medium (ThermoFisher) 
supplemented with 1 ×​ 10−8 M estradiol. Cells were culture in an Incucyte Zoom 
(EssenBioscience) programmed to capture images every 6 h. Twenty single cells 
for each cell line were followed over the course of 84 h and their doubling time 
recorded and plotted.

Cell lysis and western blot. Cells were washed twice in ice-cold PBS and lysed 
in RIPA (Sigma-Aldrich R02780) buffer supplemented with protease (Roche 
11697498001) and phosphastase (Sigma-Aldrich 93482) inhibitors for 30 min 
with intermittent vortexing. Samples were centrifuged at 4 °C at maximum speed 
for 30 min, then the supernatant was transferred to a clean Eppendorf tube. 
Protein concentrations for each sample were ascertained using a bicinchoninic 
acid (BCA) assay (ThermoFisher Scientific 23227). Equal amounts of lysates were 
loaded into BOLT 4–12% Bis-Tris Plus Gel (Invitrogen NW04120BOX). Proteins 
were transferred to a Biotrace nitrocellulose membrane (VWR; PN66485) and 
incubated with primary antibodies overnight. Proteins were then visualized using 
goat anti-mouse (ThermoFisher Scientific 31446) and anti-rabbit (ThermoFisher 
Scientific 31462) horseradish peroxidase (HRP) conjugated secondary antibodies. 
Amersham ECL Prime Western Blotting Detection reagent (GE Healthcare Life 
Sciences RPN3243) was used for chemiluminescent imaging using a Fusion solo 
(Vilber) imager. For SLC9A3R1 we used HPA027247 (Protein Atlas) at 1:1,000 
dilution, and for YY we used Santa Cruz sc-281 at a 1:500 dilution. For GAPDH we 
used Abcam ab9385 at a 1:5,000 dilution.

Transcriptional profiling. Following 48 h of transfection, MCF7 cells were either 
treated with 10−8 17-β​-estradiol (SIGMA E8875) or control treatment for 6 h before 
RNA extraction. T47D and ZR75-1 cells lines were harvested for RNA following 
48 h of transfection. No treatments were added.

RNA extraction and real-time PCR. Total RNA was extracted using an RNeasy 
Mini Kit (Qiagen 74106), and the cDNA was reverse transcribed from 1 μ​g of RNA 
using iScript cDNA synthesis kit (Bio-Rad 1708891). Real-time qPCR (RT–qPCR) 
reactions were carried out in a 10 μ​l volume containing 5 μ​l sybergreen mix (ABI 
4472918), 0.5 μ​l primer (2.5 μ​M final concentration), 2.5 μ​l genomic DNA and 2 μ​l  
DNASE/RNASE-free water. A three-step cycle programme and a melting analysis 
were applied. The cycling steps were 10 s at 95 °C, 30 s at 60 °C and 30 s at 72 °C, 
repeated 40 times.

Luciferase reporter assay. MCF7 cells were seeded in a 24-well plate at 5 ×​ 104 cells 
per well in phenol-free DMEM with 10% DCFCS and 100 U penicillin/0.1 mg ml−1 
streptomycin and 2 mM l-glutamine. After 24 h of incubation, transfection of 
plasmid DNA was performed using Lipofectamine 3000 (Invitrogen L3000015). 
Cells were transfected with 100 ng of ERE_Luciferase reporter, 10 ng of the renilla 
luciferase control plasmid (pRL-CMV), 10 ng of pSG5_ER-α​, 15 nm of siRNA and 
280 ng of Bluescribe DNA (BSM) per well, totalling 400 ng of DNA per well. After 
12 h of transfection the medium was replaced with fresh phenol-free DMEM with 
10% DCFCS and 100 U penicillin/0.1 mg ml−1 streptomycin and 2 mM l-glutamine. 
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Treatment with 10−8 17-β​-estradiol (Sigma E8875) or control treatment was 
administered and the cells incubated for 24 h. Cell lysates were then obtained using 
Passive lysis 5×​ buffer (Promega E1941). Firefly and renilla luciferase activity were 
determined using a DualGlo luciferase assay kit (Promega E2920) according to the 
manufacturer’s protocol. The renilla luciferase activity measurement was utilized as 
a control for transfection efficiency, so the ERE_Luciferase activity was normalized 
to the reading obtained for renilla luciferase activity.

Sulforhodamine B assay. Briefly, the sulforhodamine B (SRB) assay was used to 
monitor the effects of silencing either SLC9A3R1 or YY1, using siRNAs, on cell 
proliferation monolayer cultures. Cells were seeded in flat-bottomed 96-well plates 
(Costar CLS3585) at a density of 2 ×​ 103. Cells were allowed to attach overnight, 
then the first plate (Day 0) was assayed once the cells had become adherent. 
Prospective plates were assayed sequentially after 3 days, 5 days and 7 days. The 
cells were fixed by adding 200 μ​l of cold 40% (wt/vol) trichloroacetic acid (TCA) to 
each well for at least 60 min. The plates were washed five times with distilled water, 
100 μ​l of SRB reagent (0.4% wt/vol SRB in 1% wt/vol acetic acid) was added to 
each well, and the plates were allowed to incubate for 30 min. The plates were then 
washed five times in 1% (wt/vol) acetic acid and allowed to dry overnight. SRB 
solubilization was performed by adding 100 μ​l of 10 mM Tris HCl per well to the 
plates, followed by shaking for 30 min. Optical density was then measured using a 
Sunrise microplate reader (Tecan) at 492 nm. Cell proliferation was calculated over 
the 7 day period (with day 0 as baseline).

Enrichment scores. See Supplementary Computational Methods.

RI–IHC correlation. Formalin-fixed, paraffin-embedded sections for the patients 
used in the ChIP–seq section were retrieved from Imperial Tissue bank. Sections 
were stained with YY1 or SLC9A3R1 antibodies. Stained sections were divided  
into 20 sectors. Five sectors with high tumor burden were scored for the number  
of IHC-positive cells and the results averaged. The number of IHC-positive  
cells and the matched RI were analysed using linear regression using Prism 5 
(GraphPad software).

∆RI. See Supplementary Computational Methods.

YY1 and SLC9A3R1 Pan cancer expression analysis. YY1 and SLC9A3R1 
expression profiles for matched normal versus cancer samples were obtained 
using the TIMER diff.exp option (https://cistrome.shinyapps.io/timer/). YY1 
transcriptional analyses of BC subtypes were performed in the Metabric Dataset 
(Curtis Breast) using probe ILMN_1770892 or the TCGA dataset using Oncomine 
(https://www.oncomine.org/resource/login.html).

SLC9A3R1 meta-analyses. The SLC9A3R1 expression profile in drug-resistant 
cell lines was performed by analysis of RNA–seq data from ref. 10. The SLC9A3R1 
expression profile in MCF7 cells transfected with siRNA against ERα​ was 
performed by analysis of microarray data from GSE27473. The SLC9A3R1 
expression profile in additional LTED models was performed by analysis of 
microarray data from E-GEOD-19639. All statistical analyses were performed 
using Prism 5 (GraphPad software). Kaplan–Meier analysis using SLC9A3R1 
expression was performed by reanalysis of 23 independent microarray data sets 
(KMPLOT), TCGA RNA–seq data or the combined Metabric Dataset. Multivariate 
Cox proportional hazards survival analysis was performed using gene expression 
and clinical variables including nodal status, grade and size in the Metabric and 
Affymetrix data sets, using Winstat for Excel 2017. A multivariate analysis in the 
TCGA data set employing available clinical data including tumor node metastasis, 
histology, menopausal status and race did not deliver significant results for any 
of the included parameters, probably due to the short follow-up combined with 
limited number of events. The SLC9A3R1 transcriptional profile in BC cell lines 
was obtained from the HPA RNA–seq data set (http://www.proteinatlas.org/about/
download). The SLC9A3R1 transcriptional profile from tissues was obtained from 
the HPA, GTEx and FANTOM5 RNA-seq data sets (http://www.proteinatlas.org/
about/download).

Data availability. H3K27ac data for all patients’ samples have been deposited at the 
ENA (http://www.ebi.ac.uk/ena) under project no. PRJEB22757.
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variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)
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Software and code
Policy information about availability of computer code

Data collection Targeted capture was performed using NEB Cancer Hotspot panel modified to include ESR1 ligand binding domain (NEB E7000X). 
Sonicated Input material from ChIP-seq analysis (frozen tissues) was used as an input (minimum 50ng) as specified by the manufacturer. 
Sequencing was performed on a NextSeq Illumina machine by multiplexing 24 samples per lane in two lanes (Single End 75bp flow cell). 
Single-end 75-base pairs reads were aligned to the hg38 human reference genome using bwa1 version 0.7.15 (parameters: -q 0). 
Samtools (PMID: 19505943) version 1.3.1 was then used to obtain indexed bam files. Aligned reads from each captured sample were pre-
processed using Picard (http://broadinstitute.github.io/picard) version 2.6.0, applying functions AddOrReplaceReadGroups (parameters: 
RGID=1 RGLB=lib1 RGPL=illumina RGPU=unit1 RGSM=1) and sortSam (parameters: SORT_ORDER=coordinate). GATK 2 version 3.6 was 
then used for variant identification. PCR duplicates were marked using the MarkDuplicates function from Picard (parameters 
REMOVE_DUPLICATES=False AS=True). Re-alignment around indels was performed using functions RealignerTargetCreator and 
IndelRealigner from GATK (known indels from the GATK bundle: Mills_and_1000G_gold_standard.indels.hg38.vcf). This step was 
followed by base quality score recalibration (GTAK BaseRecalibrator). Mutect2 (part of GATK v3.6) was finally run separately on each 
capture, without control samples. The identified variants were then annotated to known SNPs 
(1000G_phase1.snps.high_confidence.hg38.vcf in the GATK bundle) and to COSMIC 3 version 34 (hg38). Variants showing alternate allele 
frequency lower than 1% were excluded from further analyses. Those supported by evidence from both alleles and covered by ten or 
more reads were retained. Variants overlapping known SNPs were excluded. Among the remaining variants, only those previously 
reported in COSMIC were kept. As a final step, those protein-coding variants predicted as “Neutral” by FATHMM 4were filtered out. 
 
Reads were quality controlled with FastQC v0.11.5  and aligned to the human hg38 reference using bowtie v1.1.2 5  with default 
parameters. The generated sequence alignments were converted into binary files (BAM), then sorted and indexed using the SAMtools 
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v1.3. H3K27ac peaks were called with MACS2 v2.1.16 (command-line parameters: -callpeak --format AUTO  -B --SPMR --call-summits -q 
0.01) using matched input DNA as a control. Samples showing either less than 2K or more than 200K H3K27ac peaks were not considered 
for further analysis. 
 
We re-analysed ChIP-seq data of H3K27ac profile across 33 cell lines from ENCODE 10 and 37 tissues from the Epigenomic Roadmap11, 
for a total of 337 epigenomic profiles. We downloaded matching .bam and .bed profiles from ENCODE and matching raw reads of input 
and ChIP from Epigenomic Roadmap. The epigenomic profiles of ENCODE cell lines from human hg19 reference genome were lifted to 
the human hg38 assembly using CrossMap v0.2.312. Peaks from the Epigenomic Roadmap  samples were called following the procedure 
above. The BC active promoter and enhancer sets were intersected with all the epigenomic profiles and the RI calculation of each peak 
was repeated as above. 
 
We downloaded 1000 Genomes Project genotypes data (Phase 3 release 20130502) and excluded any genotype calls in individuals of 
non-European ancestry. We then ran PLINK (v1.90b3.46)14 on the filtered genotypes data and a list of 66 CEU BC risk variants to retrieve 
1000 Genomes variants in LD with each BC variant. We defined LD variants as those within 500KB of a BC variant and having an allele 
count squared correlation >=0.8 with that variant. We also ran PLINK with the same settings on a list of 20 CEU CRC risk variants to obtain 
their LD information. The PLINK output files were then converted into BED format to be used in downstream analyses by VSE R library 
(v0.99).  
We ran VSE separately for BC and CRC variant sets to assess the enrichment of those variants in the following list of genomic features on 
hg19: 5’ and 3’ UTR, Refseq gene TSS, Refseq gene introns, Refseq gene exons, active BC promoters, active BC enhancers with SI =1, 
active BC enhancers with SI between 1 and 21 exclusive, and active BC enhancers with SI >=21. Active BC promoters and enhancers were 
converted from hg38 to hg19 using liftOver prior to running VSE. During each VSE analysis, an associated variant set (AVS) was 
constructed using LD block information from PLINK-generated variant lists. 1000 matched random variant sets (MRVS) from 1000 
Genome Project Phase III data were then generated. The final step was to compute the enrichment of AVS in the set of previously 
described genomic features compared to the null distribution (MRVS). Enrichment results are shown in Figure 1F with Bonferroni 
adjusted p-value < 0.05 marked in red. We also generated a heatmap (Figure 1E) showing the overlaps between BC risk variants as well as 
variants in LD and the genomic features of interest.  
 

Data analysis Functional characterization of the peaks. The identification of promoter and enhancer peaks was performed using an in-house pipeline 
based on BEDTOOLS v2.25.0 6and custom BASH scripts.  A promoter annotation which classifies the promoter as the region 1kb 
upstream of the transcription-start site (TSS) was generated using UCSC table browser (PMID 27899642) (assembly: hg38; groups: Genes 
and Gene predictions; track: GENCODE v24) 7.  
Peaks were then intersected using BEDTOOLS intersect (default parameters) to identify the promoter specific peaks. Annotated 
promoters which were not overlapping with the patient signal were considered inactive. In order to produce a master list of active core 
promoters, a multiple intersection between the promoter peaks was performed using BEDTOOLS multiinter to identify the common 
overlapping signal. The book-ended regions from the core signal file were merged using BEDTOOLS merge, then intersected with the 
original peak calls and sorted. All those peaks showing no overlap with the promoter annotation were considered enhancers. The 
procedure used to derive active core promoters (outlined in the previous paragraph) was applied to these signals to generate a master 
list of active enhancers. 
 
Assessment of the level of heterogeneity. Active promoters and enhancers were further processed in order to reveal whether the 
available dataset achieves a high genomic coverage. The saturation analysis was performed with ACT SaturationPlotCreator8 with default 
parameters. The frequency distribution and the average peak size distribution of each regulatory region was calculated intersecting the 
peaks from each individual with the master lists of active promoters and enhancers and then plotted using BASH and R in-house scripts. 
The size of each peak was extracted from the MACS2 output files (_peaks.xls) and the peaks binned by sharing index. 
 
Sharing Index. Sharing Index (SI) is a discrete metric introduced for measuring the usage of enhancer and promoter across the tumor 
samples. SI was calculated as the number of individual samples in which a regulatory region overlaps the master list with a coverage of at 
least 40% of its bases. This way, a discrete SI score was assigned to all promoters and enhancers in the master list. To add further 
significance to the accuracy of this metric, we compared it to a quantile normalized continuous equivalent of SI, calculated as follows. 
The number of deduplicated reads overlapping each regulatory region in the master list was calculated using BEDTOOLS Multicov with 
default parameters. A matrix showing the read count of each tumor sample across all the regions was derived and quantile normalized 
after Voom transformation (LIMMA 9 package available in Bioconductor ). In addition, data were scaled (z-score) and compressed with 
(arcsinh) transformation. 
 
Ranking Index. The level of enrichment of each regulatory region in the tumor sample dataset is scored using the Ranking Index (RI) 
metric. RIs were assigned to each called peak. Duplicated reads from the ChIP-Seq treatment files were filtered out using PICARD v2.1.1 
MarkDuplicates (REMOVE_DUPLICATES=true) and only the uniquely mapped reads were retained for further analyses. Peak read count 
was obtained using BEDTOOLS Multicov function and this value was normalized using the following equation: Nscore= ((peak read 
count / peak size)⋅106))* 103 /total mapped reads (FPKM). 
Peak calls in each sample were categorized as promoter or enhancer as described in the previous paragraph, then sorted by their FPKM 
and assigned to their respective intra-sample percentile score where 1 is highest enrichment and 100 is the lowest. The peak calls were 
then intersected with the sets of active promoters and enhancers set and the average RI for each promoter and enhancer was calculated. 
 
Ranking approach in cancer cell line and normal tissue epigenomes. We re-analysed ChIP-seq data of H3K27ac profile across 33 cell lines 
from ENCODE 10 and 37 tissues from the Epigenomic Roadmap11, for a total of 337 epigenomic profiles. We downloaded matching .bam 
and .bed profiles from ENCODE and matching raw reads of input and ChIP from Epigenomic Roadmap. The epigenomic profiles of 
ENCODE cell lines from human hg19 reference genome were lifted to the human hg38 assembly using CrossMap v0.2.312. Peaks from 
the Epigenomic Roadmap  samples were called following the procedure above. The BC active promoter and enhancer sets were 
intersected with all the epigenomic profiles and the RI calculation of each peak was repeated as above. 
 
Transcription factor profiling. The profile of the BC cistrome was imputed by taking all the potential accessible regions encoded in the 
active promoter and enhancer set. H3K27ac ChIP-Seq provides the location of the enriched histones while the transcription factors bind 
the accessible regions in the nucleosome-free region (NFR). NFRs were putatively characterized by the analysis of DNaseI-hypersensitivity 
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site (DHS) from 220 different ENCODE cell lines available at: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeUwDnase/ and http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeOpenChromDnase/; DHS profiles 
were generated using MACS2 with the following parameters: --format AUTO --nomodel --shift -100 --extsize 200 -B --SPMR --call-summits 
-q 0.01 and lifted to the human hg38 assembly.  After that, all the DHS peaks were concatenated into one sorted BED file. NFRs were 
identified as the regions between two sub-peaks at a distance of +- 71bps from the subpeak summit and the region between two broad-
peaks distant at the most 500bps. DHS signals overlapping the NFRs were retained for the analysis. The retained DHS sites were sorted 
and elongated using BEDTOOLS merge to have a unique DHS signal for all the NFRs. Motif enrichment analysis was carried out separately 
on promoter and enhancer specific DHS signals in the BC datasets using the HOMER function findMotifsGenome.pl with parameters: -size 
given -preparse. The highest 50 ranked TFs in the two groups were selected and graphed in polar histograms with a custom R script. 
We then binned promoters and enhancers by SI, overlapped the NFRs identified above and ran the motif enrichment analysis separately 
on each promoter and enhancer bin (in the same way described above).  The motif enrichment results were filtered for statistical 
significance (q-value <= 0.05) and integrated with the observed/expected ratio (OEr) of each TF with a custom R script. Two heatmaps 
(one for promoters and one for enhancers) showing the OEr across the bins were generated using heatmap.2 from the ggplot2 R 
library13 In order to highlight the most significant results from the enhancer heatmap, we computed a differential analysis between the 
2 clades of the heatmap (SI 1-21 and SI 22-44). We calculated the mean of OEr for each TF between the 2 clades and counted the 
number of significant enrichments in each clade. Then, we computed a weighted score specific to each TF multiplying the relative clade 
mean x number of significant clade enrichments. Furthermore, we calculated the log of the ratio, ranked and plot it.  DHS regions 
imputed using the procedure outlined in this paragraph were compared to ENCODE Honey Badger DHS (https://
personal.broadinstitute.org/meuleman/reg2map/) and found to be highly comparable.  
 
Variant Set Enrichment VSE. We downloaded 1000 Genomes Project genotypes data (Phase 3 release 20130502) and excluded any 
genotype calls in individuals of non-European ancestry. We then ran PLINK (v1.90b3.46)14 on the filtered genotypes data and a list of 66 
CEU BC risk variants to retrieve 1000 Genomes variants in LD with each BC variant. We defined LD variants as those within 500KB of a BC 
variant and having an allele count squared correlation >=0.8 with that variant. We also ran PLINK with the same settings on a list of 20 
CEU CRC risk variants to obtain their LD information. The PLINK output files were then converted into BED format to be used in 
downstream analyses by VSE R library (v0.99).  
We ran VSE separately for BC and CRC variant sets to assess the enrichment of those variants in the following list of genomic features on 
hg19: 5’ and 3’ UTR, Refseq gene TSS, Refseq gene introns, Refseq gene exons, active BC promoters, active BC enhancers with SI =1, 
active BC enhancers with SI between 1 and 21 exclusive, and active BC enhancers with SI >=21. Active BC promoters and enhancers were 
converted from hg38 to hg19 using liftOver prior to running VSE. During each VSE analysis, an associated variant set (AVS) was 
constructed using LD block information from PLINK-generated variant lists. 1000 matched random variant sets (MRVS) from 1000 
Genome Project Phase III data were then generated. The final step was to compute the enrichment of AVS in the set of previously 
described genomic features compared to the null distribution (MRVS). Enrichment results are shown in Figure 1F with Bonferroni 
adjusted p-value < 0.05 marked in red. We also generated a heatmap (Figure 1E) showing the overlaps between BC risk variants as well as 
variants in LD and the genomic features of interest.  
 
Footprint analysis. Footprints within the chromatin accessible regions in MCF7 were obtained using Wellington14,15 with parameters -
fdr 0.01 -pv  -5,-10,-20,-30,-50,-100. We identified the active regions in MCF7 and intersected them with the patients signals, which are 
broader then the single narrow peaks defined by MACS, and allow the identification of all the NFRs. The number footprints within each 
active regulatory region was calculated, and then normalized by the region size. The RI for eacg promoter and enhancer in MCF7 calls 
was calculated and plot in function of the number of footprints.  
 
Estimation of somatic Copy Number Alterations (sCNA). Input BAM files from ChIP-seq experiment of tumor samples and cell lines were 
processed to estimate the chromosomal losses and gains in each tumor sample dataset. After removal of duplicated reads, the input 
BAM files were processed to detect sCNA using QDNAseq16 and CNVkit tools.17 QDNAseq data processing involve genome binning, 
correction for GC-content and mappability, and normalization. The hg38 genome was binned in 15kb and 100kb sized windows and copy 
numbers were inferred applying the standard procedure (https://cnvkit.readthedocs.io/en/stable/pipeline.html) (with default 
parameters. CNVkit was run with the default parameters of the batch command after creating a flat reference genome as suggested in 
the manual using the command reference. 
 
Assessment of dinucleotide composition. The impact of possible sequence artifacts driving the SI scores has been assessed by a complete 
evaluation of the dinucleotide frequencies in each SI bin. We obtained the expected dinucleotide frequencies by processing the input 
BAM files of tumor samples in the dataset. Deduplicated Input BAM files from all patients were merged, sorted and indexed using 
SAMtools. The merged bam was then converted to FASTA. The frequencies of the 16 dinucleotides were computed using the compseq 
module of EMBOSS 18with parameter “-word 2”. The frequencies of dinucleotides in the bins were obtained by coupling BEDTOOLS get 
fasta to convert the coordinates of regulatory regions in fasta format and EMBOSS compseq -word 2 to calculate the actual frequencies 
by bin. 
 
Enrichment scores. Overlap for ER  (in vivo) vs enhancers and promoters were calculated by BEDTOOLS intersect. The percentage 
overlap was calculated on the total number of regulatory regions within each bin against the concatenate ER  binding set (all ER  in all 
patients). For YY1, FOXA1 and ER  in MCF7, intersections were calculated using Cistrome19. YY1 BED files were defined as the consensus 
narrow peaks of two biological replicates. FOXA1 ChIP-seq data and ER  were obtained in house20. The core ER  BED file was obtained 
by lifting a published dataset 21to hg19 coordinates. The private ER  BED file was obtained by iterative processing of the ER  binding 
sites unique to single patients prior to concatenation into a single file. Overlap represent the fraction of the original datasets (first 
dataset) overlapping with core ER  (second dataset). The TCGA luminal signature was obtained from22. Each gene was extended for 
20Kb upstream keeping in consideration the direction of transcription. A null gene list was generated by subtracting the TCGA luminal 
signature from a genome-wide gene list. Genes from the null list were extended in a similar way and enrichment was calculated by 
comparing the fraction of TCGA gene list with nearby binding vs. the null list. A list of estrogen target genes that do not respond to 
Tamoxifen was obtained from 23. Each gene was extended for 20Kb upstream keeping in consideration the direction of transcription. A 
null gene list was generated by subtracting the signature from a genome-wide gene list. Genes from the null list were extended in a 
similar way and enrichment was calculated by comparing the fraction of TAM resistant estrogen dependent gene list with nearby binding 
vs. the null list. 
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

H3K27ac data for all patients’ samples have been deposited at the ENA (http://www.ebi.ac.uk/ena) under project number PRJEB22757.

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences
Study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size for the ChIP-seq cohort was not predetermined as this was a discovery-based project. 

Data exclusions We have excluded from the analysis samples that yielded less than 2000 calls or over 3000000 calls (as described in the manuscript and 
reported in the supplementary tables).

Replication Each samples was exhausted after the analysis making replication of the in vivo part of the study impossible. Cell lines data were replicated 
(ChIP-seq n=2, other experiments n>5). Each replication was successful 

Randomization Randomization was not performed in the current study as this was a discovery based project and the goal was to compile a preliminary 
compendium of regulatory regions potentially involved in breast cancer. We did not design the study to compare between groups of patients 
or other clinical features.

Blinding Pathological scoring was blinded. We only gave an anonymized set of slides for scoring to the two pathologists involved in the study. Data 
were married back after the scoring was finalized.

Materials & experimental systems
Policy information about availability of materials

n/a Involved in the study
Unique materials

Antibodies

Eukaryotic cell lines

Research animals

Human research participants

Antibodies

Antibodies used WESTERN BLOT: For SLC9A3R1 we used HPA027247 (protein atlas) at 1:1000 dilution, for YY we used Santa Cruz; sc-281 at 1:500 
dilution. For GAPDH we used Abcam #ab9385 at 1:5000 dilution. 
 
For IHC: For YY1 (Protein Atlas HPA001119, Atlas Antibodies Cat#HPA001119, RRID:AB_1858930) the flowing conditions were 
used: tissue sections were incubated with the primary monoclonal. overnight at 4°C, and chromogen development was 
performed using the Envision system (DAKO Corporation, Glostrup, Denmark). A minimum of 500 tumor cells were scored with 
the percentage of tumor cell nuclei in each category recorded. For SLC9A3R1 (HPA9672 and HPA27247, Atlas Antibodies 
Cat#HPA009672, RRID:AB_1857215 and Atlas Antibodies Cat#HPA027247, RRID:AB_10601162 respectively) the following 
conditions were used. HPA9672 was diluted 1:400 and HPA27247 was diluted 1:1500. Staining was automatized with a Ventana 
Benchmark-Ultra using epitope retrieval ER2 for 20 minutes. ER and PgR immunoreactivity was assessed by the FDA-approved 
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ER/PR PharmDX kit (Dako). The prevalence of ER/PgR positive invasive cancer cells, independent of their staining intensity, was 
quantitatively annotated in the original reports. In accordance with ASCO/CAP guidelines, tumors with ≥1% of immunoreactivity 
was considered positive 
 
For ChIP: Immunoprecipitation using 4ug of H3k27ac antibodies (Abcam; ab4729) per ChIP experiment or using 4ug of YY1 
antibodies (Santa Cruz; sc-281 X).

Validation All the antibodies were commercially available and pre-validated using orthogonal methods (RNA-ICH correlation, siRNA, 
Protein/ peptide array and Mass Spec) . For IHC we used two independent antibodies to increase 
robustness.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Philippa Darbre, who received MCF7 cells on 21 October 1987 from Kent Osborne at passage 390 and called “MCF-7 
McGrath”. They were as described in his paper in detail of that year (Kent Osborne et al 1987 Biological differences among 
MCF-7 human breast cancer cell lines from different laboratories. Breast Cancer Res Treat 9: 111-121

Authentication Authentication Karyotyping was perfomed for all cell lines

Mycoplasma contamination Mycoplasma has been routinely tested throughout the study (once a week) and confirmed negative.

Commonly misidentified lines
(See ICLAC register)

None of the cell lines used are listed in the ICLAC database

Human research participants

Policy information about studies involving human research participants

Population characteristics Participants were selected based on histo-pathological data (luminal invasive breast cancer, estrogen receptor positive). No 
selection was applied on grade, node, stage, size or age. All tissues were frozen. No covariate-relevant characteristics were 
collected excluded being ER-positive. 

Method-specific reporting
n/a Involved in the study

ChIP-seq

Flow cytometry

Magnetic resonance imaging

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

Data have been submitted to EBI and can be accessed using the PRJEB22757 code

Files in database submission  Raw reads and Peak files

Genome browser session 
(e.g. UCSC)

NA

Methodology

Replicates  No Replicates are available for the in vivo part of the study. Two replicates were performed for YY1 ChIP-seq in cell lines

Sequencing depth Sequencing depth At least 40M reads were used for each experiments.

Antibodies H3K27ac was acquired from AbCam (ab4729). YY1 was bought from Santa Cruz (sc-281 X)

Peak calling parameters All the details of the analysis are reported in the supplementary computational method file.

Data quality All the details of the analysis are reported in the supplementary computational method file.

Software  All the details of the analysis are reported in the supplementary computational method file.
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