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Cell Dispersal Influences Tumor 
Heterogeneity and Introduces a 
Bias in NGS Data Interpretation
Lőrinc Pongor   1,2, Hajnalka Harami-Papp1,2, Előd Méhes3, András Czirók   3,4 &  
Balázs Győrffy1,2

Short and long distance cell dispersal can have a marked effect on tumor structure, high cellular 
motility could lead to faster cell mixing and lower observable intratumor heterogeneity. Here we 
evaluated a model for cell mixing that investigates how short-range dispersal and cell turnover will 
account for mutational proportions. We show that cancer cells can penetrate neighboring and distinct 
areas in a matter of days. In next generation sequencing runs, higher proportions of a given cell line 
generated frequencies with higher precision, while mixtures with lower amounts of each cell line had 
lower precision manifesting in higher standard deviations. When multiple cell lines were co-cultured, 
cellular movement altered observed mutation frequency by up to 18.5%. We propose that some of 
the shared mutations detected at low allele frequencies represent highly motile clones that appear in 
multiple regions of a tumor owing to dispersion throughout the tumor. In brief, cell movement will lead 
to a significant technical (sampling) bias when using next generation sequencing to determine clonal 
composition. A possible solution to this drawback would be to radically decrease detection thresholds 
and increase coverage in NGS analyses.

Accumulated genetic changes in a malignant tumor comprise somatic mutations and copy number changes, gene 
expression alterations, and epigenetic modifications. The differential combination of these traits in individual 
cells leads to intratumor heterogeneity which helps a tumor to increase survival, acquire metastatic capabilities 
and to develop resistance against systemic chemo- and targeted therapies1. In other words, intratumor heteroge-
neity can be interpreted as an evolutionary process which leads to a continuously increasing number of distinct 
clones within the primary tumor mass2. The presence of these distinct genotypes can give fitness advantage to a 
particular tumor clone at a certain stage and is therefore a driving force of the malignant progression. Dispersal 
is a crucial factor in these evolutionary processes, however little is known about the role of cell dispersal and 
motility in tumorigenesis.

From the theoretical point of view, evolution of a tumor can be either linear when mutations follow each other 
in a serial order so that a specific lineage will contain all previous mutations3, or it can be branched i.e. lineages 
will contain a different sets of mutations4. Recent multi-region sequencing studies are in favor of the branched 
evolution model in tumors5. When the mutation profiles of cancer patients are examined, we can identify muta-
tions present in each of the samples obtained from a single tumor. Other mutations are specific to few samples 
only. Interestingly, some of the patients show low genetic (mutational) heterogeneity, in which case almost all 
of the mutations are either common in all intra-tumor samples, or exclusive in the primary tumor. The under-
lying process that may cause these conserved mutational profiles is unknown – a possible explanation may be a 
sub-clone selection process caused by clonal competition4.

The Cancer Genome Atlas (TCGA) of the National Cancer Institute (http://cancergenome.nih.gov/) has pub-
lished a large number of breast cancer samples investigated with NGS6. The results were in general agreement 
with the current dogma of clinical practice i.e. high mutation rates entail a lower survival rate. This established 
view was however questioned by findings that even marginal clones can have a prominent effect on the patients’ 
response to therapy and survival after drug treatment7, 8. Moreover, a careful statistical re-analysis of TCGA data 
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showed that a slight change to the detection strategy can lead to a six-fold increase in the number of potentially 
relevant mutations9 which again points to the difficulty of relating mutational frequencies to prognosis.

Recently, it was shown that colorectal cancer cell lines harboring different mutations in signal transduction 
pathways can have different migratory potential10. Features related to cytoskeletal mechanisms affect tumor 
growth and metastasis11, and altered pathways can influence multiple key genes involved in these processes12, 13.  
There is an important additional implication in case the mutations are detected by NGS: a mutation enabling 
rapid cell dispersal will result in lower number of these cells in a particular tumor sample (Fig. 1). By setting high 
detection cutoff values, faster moving clones will be either diluted to sub-clonal frequency levels, or will remain 
undetected, either way causing misinterpretation. Therefore, we cannot exclude that apparently less heterogene-
ous tumor samples that are generally considered less dangerous according the current dogma, can in fact have 
a much worse prognosis simply because their clinically relevant mutations and their high mutational frequency 
levels are diluted below sub-detection levels.

The basic assumption of the present work is that high cell motility will lead to faster cell mixing within tumors 
and thereby lower the chance of detecting intratumor heterogeneity. Thus, depending on mutation composition, 
apparently homogeneous tumors can have actually worse prognosis than heterogeneous ones. In order to appraise 
these issues, we evaluated a model for cell mixing that investigates how short-range dispersal and cell turnover 
can account for cell mixing inside a tumor. We then utilized next generation sequencing in this model system to 
establish optimal detection cutoff values capable to capture motility-related mixing. Finally, we assessed the effect 
of motility-related mutations on clinical outcome in a sizeable set of patient samples. We found that increased cell 
motility is in fact likely to cause a bias in detecting tumor heterogeneity by NGS analysis, an issue that may need 
to be dealt with in the clinical practice.

Materials and Methods
Cell culture.  A total of four human cell lines deriving from melanoma were used in the study. The A375 
GFP cell line (LINTERNA A375 GFP tagged expresses green fluorescent protein as a free cytoplasmic protein, it 
possesses bright green fluorescence at 482/502 nm excitation/emission wave) was purchased from Innoprot. The 
Mel-Juso RFP cell line (Mel-Juso-TurboFP602-GVO-CD) was purchased from BioCat. SK-MEL-28 cell line was 
purchased from CLS Cell Lines Service and the fourth cell line was our previously used MeWo14.

The Mel-Juso cell line was maintained in RPMI-1640 medium, the A375 GFP, SK-MEL-28 and MeWo cell lines 
were cultured in DMEM medium (Lonza, Switzerland; with 4500 mg/dm3 glucose, piruvate and L-glutamine), 
each supplemented with 10% fetal calf serum (Lonza, Switzerland) and 1% penicillin–streptomycin–amphotery-
cin (Lonza, Switzerland) in tissue culture flasks at 37 °C in a humidified 5% CO2 atmosphere.

DNA isolation and quality control.  Genomic DNA was extracted directly from each cultured cell line 
for mutation validation. After trypsin-EDTA treatment for disruption of cell monolayers the genomic DNA was 

Figure 1.  Theoretical opportunities of correlation between tumor composition and cell dispersal. During its 
course, the tumor accumulates multiple mutations (A). Sample collection in a model without motility will 
only acquire some of the clones present in the entire tumor (B). In contrast, high motility tumors will include 
multiple different clones in a single sample. These will impact on cellular composition when the sample is 
sequenced (C).
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extracted from the cell suspension with DNeasy Blood and Tissue Kit (Qiagen, Germany) according to the manu-
facturer’s recommendations. Approximately 500 ng DNA was extracted from ~5 × 105 cultured cells for each PCR 
reaction. Genomic DNA was also extracted from the samples of the Ring cell invasion assay (see Ring cell invasion 
assay section). In this, the sampling was performed by cell scraper (VWR, Hungary), the scratched cells were 
raised in growth medium, and the genomic DNA was extracted directly from the cell suspension. In each case, 
the concentration (ng/µl) and purity (absorbance at 280 and 260 nm) of the DNA was measured by a Nanodrop 
ND1000 spectrophotometer.

Validation of cell line specific genotype.  Presence of cell line specific homozygous and heterozygous 
mutations in the TP53, PTCH1, CDKN2A, BRAF, HRAS, NRAS, ZNF214 and NF1 were validated using Sanger 
sequencing. These mutations are also used to differentiate and to calculate the composition of cell line mixtures. 
The direct DNA sequencing was performed using genomic DNA amplified by polymerase chain reaction. Primers 
were designed to be located in flanking sequences previously described to contain a specific mutation in the gene 
according to COSMIC (cancer.sanger.ac.uk/cell_lines) to allow amplification of genomic DNA only. The used 
primers and primer features are listed in Supplemental Table 1.

The PCR reaction was performed in 25 µl final volume, containing 500 ng of genomic DNA, 10 mM of each 
dNTP (Invitrogen, CA, USA), 10 µM of each of the eight primers, 5 units of Taq polymerase (Invitrogen), 2.5 µl 
10x buffer, completing to the final volume with nuclease free H2O. The amplification reaction was carried out 
in a thermocycler (Swift Maxi, ESCO) with an initial denaturation step of 3 min at 94 °C, followed by 35 cycles 
consisting of three steps: 94 °C for 30 sec, 53 °C for 30 sec, and 72 °C for 2 min. Annealing temperature was opti-
mized to the primers melting temperature. The last cycle was followed by an extension step of 6 min at 72 °C. The 
PCR product was purified, and DNA sequencing was performed at the Department of Genomic Medicine and 
Rare Disorders (Semmelweis University, Budapest, Hungary). The DNA sequence was analyzed by BioEdit and 
Genedoc programs.

Ring cell invasion experiment.  FlexiPERM® conB cell exclusion silicone rings were purchased from 
Sarstedt AG&Co. (Nümbrecht, Germany), and were preserved in pure alcohol solution until use. The rings were 
placed vertically in 60 × 15 mm culture dishes (Sarstedt AG&Co., Germany). In this setting, the inner cultivation 
area was 3.1 cm2 per unit and the external growth surface was 17.9 cm2/well. Outline of the rings were marked 
on the transparent plate bottom. The first cell suspension was added carefully to the inner side of the ring with 
a cell number of 300,000 cells inside the ring in 3 ml volume of DMEM medium. After an overnight incuba-
tion for cell attachment, the rings were carefully removed using tweezers followed by washing the cells with 1x 
phosphate-buffered saline (PBS) to remove cell debris. The second cell line (MeWo in each case) was dispensed in 
the entire well surface in 6 ml of DMEM medium, with a concentration of 100,000 cells/ml. The marked borders 
of the silicone rings were monitored under light microscope (Leica Microsystems, Wetzlar, Germany). Growth 
medium was replenished every second day. Fluorescent photographs were taken at multiple sites along the 
external and inner border of the marked ring on the 7th day (after 6 day of co-cultivation) (Leica Microsystems, 
Wetzlar, Germany) at the HAS Research Center for Natural Sciences. Images were processed by Image J software 
(National Institutes of Health, Bethesda, MD).

Sampling from the Ring cell invasion experiment was processed in two circular arcs within the cell culture 
dishes. The inner arc was positioned directly next to the marked border of the formal ring, its width was 10 mm 
(inner sample), and the second arc was positioned directly to the wall of the dish, its width was 10 mm (exter-
nal sample). Sampling was performed by a sterile cell scraper. The cell combination sample set was contained 
2/5/10/25 or 50% LINTERNATM-A375 cells among MeWo cells in final 1 × 106 cell/ml concentration.

We computed Wilcoxon signed rank test to compare mutation frequencies between invading cell lines and 
MeWo, and to compare the degree of invasion between A375 and SK-MEL-28.

Video microscopy.  Time-lapse recordings were performed on a computer-controlled Leica DM IRB 
inverted microscope equipped with a Marzhauser SCAN-IM powered stage and a 10x N-PLAN objective with 
0.25 numerical aperture and 5.8 mm working distance. The microscope was coupled to a Zeiss Colibri illumina-
tion system and an Olympus DP70 color CCD camera for epifluorescent image acquisition.

Cell cultures were kept at 37 °C in humidified 5% CO2 atmosphere in tissue culture grade Petri dishes (Greiner, 
Germany) in a mini incubator (CellMovie) mounted on the powered stage of the microscope. A custom made 
time-lapse experiment manager software controlled the field of view and plane positioning, illumination and 
image acquisition on a PC. Phase contrast and epifluorescent images of cells were collected consecutively every 
10 minutes from each of the microscopic fields for up to 72 hours. Images were edited using NIH ImageJ software.

Quantification of cell velocity and motility.  Cell motility was quantified as the net displacement of 
tracked cells during the first 24–72 h of the recorded time period. The velocity, vi(t), of a given cell i at time t was 
calculated as vi(t) = |xi(t + Δt) − xi(t)|/Δt with a suitably chosen Δt. We selected Δt = 1 h, where the typical cell 
displacements are larger than 10 μm, hence larger than the error of the manual tracking procedure performed 
with the help of a custom-made cell tracking software.

Average velocity given by F(v) were calculated as shown in eq. (1):

∑= =v t N t v t( ) 1/ ( ) ( ) (1)i
N t

i1
( )

where the summation goes over each N(t) cell being in the cell population. The velocity distribution function 
F(v) gives the probability that for a randomly chosen i and t the velocity vi(t) is larger than v. Average distance of 
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cell migration, d(τ), was calculated for a range of elapsed time lengths τ as: d(τ) = 〈|xi(t + τ) − xi(t)|〉i,t where the 
average 〈…〉i,t is taken over each possible choice of t and i.

Ion Torrent Sequencing.  Amplicons were designed using the AmpliSeq Designer software (Life 
Technologies, CA, USA), targeting the entire coding sequence of the genes. Primers were designed to include 
parts of the introns to achieve a higher coverage of the coding exons. Amplicon library was prepared with the 
Ion AmpliSeq Library Kit 2.0. In this, primer pools were added to 10 ng of genomic DNA and PCR amplified. 
PCR cycles were set up to include 18 cycles of 99 °C for 2 min, at 99 °C for 15 s, and at 60 °C for 4 min, and finally 
a plateau at 10 °C. Primers were partially digested using a FuPa reagent, and then sequencing adapters were 
ligated to the amplicons. Library was purified using the Agencourt AMPure XP Reagent (Beckmann Coulter, 
CA, USA). The final library concentration was determined by fluorescent measurement on Qubit 2.0 instrument 
(Life Technologies, CA, USA). Template preparation was executed using an Ion OneTouch kit on semiautomated 
Ion OneTouch instrument using the emPCR method. After breaking the emulsion, nontemplated beads were 
removed from the solution during the semiautomated enrichment process on Ion OneTouch ES instrument. 
Following adding the sequencing primer and polymerase, the fully prepared Ion Sphere Particle (ISP) beads 
were loaded into an Ion 314 sequencing chip, and the sequencing runs were performed using the Ion PGM 200 
Sequencing kit (Life Technologies, CA, USA). Average sequencing coverage was 600x (range 200–1200x).

The sequencing was run using three regions/well with one repeat for each of the three cell lines (3 × 3 × 2 = 18 
measurements). The dilution cascade was measured in duplicates (2 × 5 = 10 measurements). Four additional 
repeats were added as technical controls (total number of sequencing samples n = 32).

Data Analysis.  Data from the Ion Torrent runs were analyzed using the platform-specific pipeline soft-
ware Torrent Suite v3.2.1. Quality control of reads was performed with the FastQC, followed by read trim-
ming using trimmomatic15. High quality reads where mapped to the human genome (GRCh37, Ensembl) using 
BWA MEM16, and converted to bam format using SAMtools. Aligned reads where processed using the GATK 
toolkit17 based on the GATK pre-processing best practices (https://www.broadinstitute.org/gatk/guide/bp_step.
php?p=1). Mutation calling was performed using the SAMtools mpileup (http://www.htslib.org/) default param-
eters. Mutations were identified by first selecting regions with cell line specific mutations from the SAMtools 
mpileup output, followed by calculation of reference and non-reference base totals at all positions. In case of 
non-reference, bases had to match the alteration of the cell lines.

Modeling of cell dispersal and tumor heterogeneity.  In addition to the experimental investigations, 
we set up a computational model in order to correlate the experimentally observed cell behavior with a simple 
mathematical description of cell dispersal and heterogeneity.

This model uses an N x M sized matrix to simulate the surface of a plate. Each x, y coordinate pair represents a 
position on the plane where a cell can be placed, and movement outside of the boundaries of the matrix is prohib-
ited. The model contains a few simplifying assumptions: cells cannot overlap, environment (e.g. medium concen-
tration through time) is constant, apoptosis is determined as a random function, and the size of cells is identical.

Two cell types are used in each simulation, agreeing with the experiments of the invasion assay. The first cell 
line (inner) is placed in the middle of the plate simulating a silicone ring with a radius N × 0.1 (radius is 10% of 
height), while the second cell line was evenly distributed across the entire surface. The density of the inner cell line 
was 5%, while density of the second cell line was set to 2.5%.

Cell velocity characteristics measured in the invasion assay were used during simulation. Each cell type “ i” 
had a clonal persistence (velocity) Ci,clone_persistance of 5, 13 and 15 for the MEWO, SKMEL28 and A375 respectively, 
where each simulated cell “ j “ had persistence randomly selected using eq. (2):

= ∗C rand C(2 ) (2)j i cell persistance i clone persistance, ,

Persistence in the simulation is represented by a separate movement counter for each cell. Movement direction 
for each cell is randomly selected at each hour of the simulation. Clone division time Ti,clone_division_time was set to 
22 h, 22 h and 19 h for the MEWO, SKMEL28 and A375 respectively, where division time for each simulated cell 
“ j ’’ was selected using eq. (3):

= ∗T rand T(2 ) (3)j i cell cell division time i clone division time, ,

Division time for each cell was stored in a separate division timer showing the number of cycles needed to 
pass before division. The division timer decreases at each cycle, while the movement counter increases until the 
maximal travel distance is reached.

In the simulation 30 cycles represent one hour, the total time of the simulation is 6 days. During each cycle 
of the simulation, the first iteration through cells identifies candidates that will divide by decreasing the division 
timer until 0 is reached. Cell division involves creation of a daughter cell adjacent to the parent, where cell char-
acteristics are randomly generated based on the previous sections (eqs 1 and 2). The second iteration identifies 
cells that are moving based on the persistence (movement counter). In case a cell moves, the cell is placed in a 
position where no other cell is present in a predetermined direction. In case a cell reaches the boundary of the 
simulation space or no space is available in the original movement direction, the direction is altered by inverting 
the x or y directions.

The modelling program was written in C programming language; data visualization was performed using the 
Allegro package version 5.2 (http://liballeg.org/). The program is available upon request.

https://www.broadinstitute.org/gatk/guide/bp_step.php?p=1
https://www.broadinstitute.org/gatk/guide/bp_step.php?p=1
http://www.htslib.org/
http://liballeg.org/
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Results
Cell dispersal and tumor velocity.  By tracking the cell movement of each cell line separately by video 
microscopy (Fig. 2A), we were able to quantify cell motility, dispersal and velocities as well as movement direc-
tions. Cell displacement in monocultures showed random movement directions, while co-cultured cell displace-
ment direction was mostly influenced by cell density, in which cells tend to move into lower density regions. The 
MEWO cell line had the lowest velocity (5 micron/h), while the other cell lines had similar high velocities around 
12–13 micron/h (Fig. 2B). For this reason, we decided to perform ring cell invasion by pairing the two faster A375 
and SK-MEL-28 cell lines with the slower MEWO cell line. Mono-culture video microscopy results can be found 
in the supplementary video material (Supplemental Video 1). The microscopy analysis results are displayed in 
Supplemental Fig. 1 comprising of cell line velocity (Supplemental Fig. 1A), displacement (Supplemental Fig. 1B) 
and velocity probabilities (Supplemental Fig. 1C).

To differentiate cell lines, and to calculate clonal compositions, a total of 6 key cell line specific mutations were 
selected in the BRAF, A1CF, NF1, TP53, EGFR and PTEN genes (Fig. 2C). A complete list of sequenced mutations 
can be found in the Supplemental Table 2. Three key mutations in the BRAF, TP53, and EGFR genes were further 
validated using Sanger sequencing (Fig. 2D).

Ring cell invasion experiment proves marked infiltration and a reduction in homozygous muta-
tion frequencies.  Cell dispersal and mixing was modelled using a ring cell invasion experiments (Fig. 3A). 
In these experiments, one cell line was placed in an inner circle (separated by a silicone ring) of a culture dish. 
After incubation and cell adhesion to the dish, the silicone ring was removed, and the second cell line (MEWO 
in each case) was placed on the entire surface of the dish. Invasion is represented as cells leaving the inner core 
area towards the external rings. Cell invasion was measured by following cells using fluorescent video microscopy 
(Fig. 3B). Video microscopy results of cell dispersal using the A375 and Mel-Juso fluorescent cell lines can be 
found in Supplemental Video 2. During each experiment, two samples were isolated and used in the NGS decom-
position analysis. The first sample was collected with a 10 mm radius surrounding the perimeter of the silicone 
ring, while the second sample was collected from the external region of the culture dish (Fig. 3A).

Sequencing results of the A375-MEWO pairs show an infiltration rate of 18.5% in the internal sample 
with a proportion below 1% of A375 cells in the external region (Fig. 3C). Heterozygous mutation frequencies 
of the MEWO cell line were 42.0% in the inner region, and ~54.2% in the external region, which was in the 
expected range (Supplemental Table 3). Invasion sequencing frequencies). Interestingly, we identified a total of 
45 reads that derived from the A375 cell line in the external region, with a total frequency of 0.5%. In case of the 
SK-MEL-28 and MEWO invasion assay, we observed an 8.9% infiltration rate in the inner sample, with no detect-
able SK-MEL-28 mutations in the external region (Fig. 3C).

Figure 2.  Migration of different cell lines. Video microscopy images of the highly active A375 (A). One can 
compute the absolute movement as a function of time and use this to compute cell line velocities (B). Selected 
key mutations for NGS sequencing (C) and mutations validated using Sanger sequencing (D).
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Notably, when looking at the mean mutation frequencies of the dominant cell line in the ring invasion exper-
iments, we see that even though the external samples of the SK-MEL-28 and MEWO pairs had no detectable 
infiltration, homozygous mutation frequencies already dropped to 97.5%. Interestingly, standard deviations of 
mutation frequencies detected in one sample ranged between 6–12% in case of the inner samples (Supplemental 
Table 3). Invasion sequencing frequencies), which may have significant effect on data interpretation. Mean fre-
quency difference for mutation pairs in biological replicates was at 3.8% for high coverage mutations (range 
between 0–9%, standard deviation of 2.5%), and 7.6% including mutations with very low coverage (range between 
0–34%, standard deviation of 9.6%).

The differences of mutation frequencies of the invading cell lines (A375 or SKMEL28) compared to MEWO 
were significant in all four settings (Fig. 3C). Mutation frequencies detected in the inner sections of the two invad-
ing cell lines were significantly different, where A375 had a higher degree of invasion compared to SKMEL28 
(p = 0.011). Notably, when comparing homozygous mutation frequencies of the MEWO cell lines in the two inva-
sion experiments, the difference in the degree of invasion was significant (p = 0.0059), which was not detectable 
(p = 0.39) when performing the analysis using heterozygous mutations. The difference in the external sample was 
not significant.

Calibration runs uncover higher deviations for cells having lower proportions.  To better under-
stand the linkage between cellular composition and mutation frequencies, we performed a calibration sequencing, 

Figure 3.  Ring cell invasion assay and migration trajectory. An experimental model of cell line dispersal 
utilizing three cell lines with dissimilar movement features. During the experiment, spatially separated 
differentially fluorescent cell lines are mixed in a two-step process (A). As a result, mixing of the two cell lines 
can be documented using fluorescent microscopy as displayed for A375 and Mel-Juso (B). Cellular composition 
measured using next-generation sequencing (C). In each case, the cell lines with higher velocities (A375: red 
and SK-MEL-28: orange) were paired with the MEWO (blue) cell line.

http://3
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where pre-determined volumes of two cell lines were mixed. The selected proportions were 2%, 5%, 10%, 25% 
and 50% of the A375 and MEWO cell lines as well as SK-MEL-28 and MEWO cell line pairs (Fig. 4A), each with 
technical replicates.

Higher proportion of one cell line generated frequencies with higher precision, while mixtures with even 
amounts of each cell line had lower precision manifesting in higher standard deviations ranging between 8–17% 
in case of high coverage. When including low coverage samples, standard deviation range increased to 30% 
(Fig. 4B).

Mean frequency difference for mutation pairs in technical replicates was 5.6% (mean ranging between 2.9–
10.4%) in the case of the A375-MEWO pair. Similar results were obtained by the SK-MEL-28 and MEWO calibra-
tion sequencing technical replicates, where the mean frequency difference of mutations is 3.2% ranging between 
1.6% and 5.6%. Interestingly, sequencing of the NF1 and PTCH1 genes in the A375 and MEWO pairings gener-
ated higher deviations, probably due to low coverage in one of the replicates at each combination.

Sequencing coverage in the calibration sequencing and ring invasion assays spanned between 100x–1200x. 
Coverage had a great effect on mutation frequencies in our experiments, which we further examined using a 
permutation test. Permutation test to calculate mutation frequency standard deviations was performed by gener-
ating/simulating reads with a predetermined mutation frequency, followed by shuffling of reads and calculation 
of the “measured” mutation frequency with different coverages. This process was done in five steps: 1) generating 
an array of 10000 elements (representing reads), 2) mutating a given F(expected) percentage of the simulated 
reads for frequencies between 1–99% separately, each percentage with 100 replicates, 3) shuffling of reads with 
Fisher-Yates shuffle, and 4) calculating the F(calculated) frequency of the first N reads representing total cover-
ages of 50x, 100x, 200x, 250x, 400x, 500x, 600x, 700x and 1000x, and finally 5) calculating the standard deviation 
between F(expected) and F(calculated) frequencies among replicates. In this, low read coverage of a mutation 
generated higher average and maximum standard deviations (4.6% and 12.9% respectively), which decreased to 
less than 3% as sequencing coverage increased (Fig. 4C).

Establishing an in silico model algorithm.  In silico modelling was performed utilizing phenotype data 
obtained from the mono-culture experiments. Approximate cell doubling time was set 22 hours for the MEWO, 
19 hours for the A375 and 22 hours for the SK-MEL-28 cell line. Cell movement was set using data measured 
at 10-hour movement: MEWO cell line movement was set to 5 microns, while the other cell lines were set to 
12 microns. In line with the monoculture experiments, simulations lasted for a total of 72 hours. By tracking 
the movement of a few cells, we generated a random movement pattern analogous to the cell culture experi-
ments (Fig. 5A), Using the simulated data, we computed cell velocities which resembled the experimental results 
(Fig. 5B). The software can be downloaded as Supplemental Material 1.

Using the set parameters, we modelled cell mixing between the A375 and MEWO, and SK-MEL-28 and 
MEWO cell line pairs. The obtained mixtures of the simulated inner and external samples were similar to compo-
sitions measured during the Ring cell invasion assay. The simulated progression in this setup identical to the Ring 
cell invasion experiment is presented in Supplemental Video 4.

Figure 4.  Correlation between cellular composition and mutation frequencies using next-generation 
sequencing. Calibration sequencing frequencies of the A375 and MEWO cell lines using homozygous 
mutations (A). Calibration sequencing frequency results of the SK-MEL-28 and MEWO pairs calculated 
from heterozygous mutations (B). Mean (green) and maximal (grey) mutation frequency standard deviations 
obtained from permutation test based on different coverages (C).

http://1
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Discussion
Clinical diagnostic sequencing of tumors usually involves analysis of genomic alterations using biopsies, with spe-
cial attention to have a high proportion of tumor cells in the sample. Genetic composition of multiple regions in 
one tumor can be significantly diverse and even mutations practically undetectable at diagnosis can have a strong 
impact on survival and response to treatment18, 19. The identification of clinically relevant alterations is a puzzling 
task as less common mutations in heterogeneous tumors can be diluted below detection thresholds. In our exper-
iments we show that cells can penetrate neighboring and distinct areas in a matter of days. Cellular frequencies 
measured will depend on the localization of sample acquisition and the extent of the samples.

Determining clonal and sub-clonal heterogeneity is usually accomplished by linking mutation counts, muta-
tion frequencies, and copy number variation status20. Here, we found that sequencing predetermined mixtures of 
two cell lines generated high standard deviations in mutation frequencies ranging up to 17%, while the difference 
in technical replicates typically remained below 10% with a few exceptions. In a previous study, even using a high 
stringency of quality check metrics, the proportion of erroneous variant calling stretched over 20% in a single 
experiment – although using an older sequencing platform21. These observations show that even though NGS 
sequencing is precise, a minor change in sample preparation and analysis (e.g. issues connected to sample acqui-
sition, handling, and processing) can have dramatic results on the final genetic composition.

We have to note that the two distinct cell lines (A375 and SK-MEL-28) displayed different degree of inva-
sion. When detection thresholds are set to an adequately sensitive level and the coverage is sufficiently robust, 
multi-region sequencing can enable to track such distinct clones and their contribution to intratumor heteroge-
neity in a clinical sample. Highly mobile subclones can be either less or more present in a given sample than less 
mobile subclones.

Interestingly, when sequencing pre-determined mixtures of two different cell lines, 50–50% distribution 
resulted in the highest standard deviation in the detected cellular proportions. This was especially prominent in 
case heterozygous mutations were evaluated. In addition, even with a coverage at 1000x the standard deviation 
of the mean mutation frequencies still remained as high as 2%. We have to emphasize that here we used only two 
cell lines in one experiment in each setting. In a patient-derived tumor sample the different clones can all together 
represent a minority compared to normal DNA originating from immune cells and the tumor environment. In 
turn, this will result in an even smaller proportion of actual tumor cells with a given mutation in the sample. All 
together these results suggests that current next generation sequencing is not yet fully capable of exactly deter-
mining clonal composition and intratumoral evolution.

Motility can affect the mutation detection using next-generation sequencing and a shift in frequencies may 
misleadingly be interpreted as a change in clonal composition. Higher volume of a given cell line generated 
frequencies with higher precision, while mixtures with lower amounts of each cell line had lower precision man-
ifesting in higher standard deviations. This is an alarming observation emphasizing a possible bias when using 
next generation sequencing to monitor and estimate tumor progression, since mathematical models that predict 
evolution paths22 often use mutation frequencies as key input information23.

Here we also present an in silico simulation model of cellular mixing. By only setting a few basic parameters 
(division rate, velocity, etc.) the model delivered a results comparable to the actual experimental observations. 

Figure 5.  An in silico modelling of cell mixing. Visualization of the in silico model of cellular dispersal with 
maximal cellular distance marked by horizontal red line (A). Modeled cell velocities show stable cell speed 
during the simulation process for all four cell lines (B).
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These results strongly support our hypothesis and enables future reverse engineering tumor compositions in 
order to decipher the process of tumor evolution.

A limitation of our approach is the confinement of the investigation to a 2D model. A recent in silico study 
has pointed out the effects of certain mutations on clonal composition using 3D models. In this, novel driver 
mutations decreased genetic diversity, while lack of driver mutations lead to a heterogeneous tumor24. Another 
limitation is the use of unobstructed space easily filled by the cells in our in vitro experiments – such conditions 
are only indirectly comparable to in vivo tumors. On the other hand, the growth of a tumor lasting for several 
years provides a similar opportunity for cancer cells to achieve a slow mixing. Finally, in our experiments we 
sequenced a panel of genes using targeted sequencing. In most cases, variant callers either identify germline 
mutations or somatic mutations in which case a normal/tumor pair is required. Because of the small size of the 
panel, varying coverage, and the fact that we knew where to expect the mutations, we decided on performing 
the analysis using a simple approach focusing on cell line specific mutations. Consequently, the applied method 
does not include statistical or background filtering, and cannot be employed to compute mutation calling rates in 
dissimilar experimental situations.

In summary, we demonstrate that cell movement can significantly influence tumor composition. Current 
methods for studying intratumoral evolution assume that genetic lesions are homogenous between regions and 
represent a shared clonal origin between tumor cells. These models do not account for the fact that some cells 
are more mobile than others. This can lead to mis-calling clones as absent or non-contributing to heterogeneity 
in multi-region sequencing studies of tumor evolution. We propose an alternative hypothesis that some of the 
shared mutations detected at low allele frequencies represent highly motile clones that appear in multiple regions 
of a tumor owing to dispersion throughout the tumor. This mixing of cells can lead to a sampling bias when using 
next generation sequencing to determine clonal composition. A possible solution to this drawback would be to 
radically decrease detection thresholds and increase coverage in NGS analyses.
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